Name	Te	est 1 (9/26)	
CHEM 0211 (Adv. Inorganic)	Fa	all 2012	
1. a. (4 pts.) According to current theories on nucle the subatomic particles, hydrogen nuclei, and	ogenesis, shortly after what event were n I helium nuclei formed?	nost of ₁	
		2	
b. (4 pts.) Where, and by what process, are hydrouclei.	rogen and helium nuclei converted to lar	ger 3	
		4	
	e process used in part b? Explain briefly.	5	
c. (4 pts.) Are all heavy nuclei made by the proc		6	
		7	
		8	
2 (10 pts) List the l_{1} m _l and n values for an electron in each of the following orbitals. If more			
than one n , l , or m_l quantum number can be used	d to describe the electron, list them all.	-	
a. an e⁻ in a 3s orbital	b. an electron in a 6p orbital	10	

3. a. (6 pts.) Match the definition with the correct term.

siderophile	"Copper loving" combines with sulfur, selenium and arsenic	
chalcophile	"Iron loving" combines with metals like iron	
lithophile	"Rock loving" combines with oxygen and halogens.	

b. (6 pts.) If you were looking for "rock-loving" elements, would you expect to find them in the Earth's core? Explain, briefly.

4. (10 pts.) Rutherford's famous gold foil experiment established what fact about atomic structure, explain.

- 5. When an e⁻ is added to a B atom, energy is released, and when an e⁻ is added to an C atom, slightly more energy is released. On the other hand, energy is not released when one attempts to add an electron to a N atom.
- a. (6 pts.) Using ideas like nuclear charge, electron configuration, and others, explain why more energy is released when an electron is added to C as compared to B.

b. (6 pts.) Using ideas like nuclear charge, electron configuration, and others, explain why more energy is not released when an electron is added to a N atom even though a N atom has a more positive nucleus than a C atom.

6. (16 pts.) Draw Lewis structures for the following molecules.

a. N₂O b. Cl₃PO

7. a. (8 pts.) Draw resonance structures for the two molecules that are drawn below.

b. (4 pts.) For i and only i calculate the formal charges for the atoms.

c. (4 pts.) for i and only i Rank the structures from lowest (#1) to highest (#2, #3, etc.) energy.

i. $\underline{s} = c = \underline{o}$ ii. $[s = n - \underline{n}]^{-1}$

8. (12 pts.) Some possible arrangements for bonds around a central atom are drawn below. Label each drawing with the appropriate name: tetrahedral, square antiprismatic, pyramidal, bent, v-shaped, trigonal bipyramidal, trigonal planar, pentagonal bipyramidal, octahedral, see-saw, T-shaped.

10. (12 pts.) In comparison to the repulsion between pairs of electrons in nonpolar σ bonds, explain how the following features effect the structure of a molecule.

a. lone pair electrons

b. π bonds

c. bonds to electronegative atoms