\qquad

1. (12 pts.) Describe what each of the following symmetry operations are.
2. \qquad
a. a C_{2} operation
3. \qquad
b. a σ_{v} operation
4. \qquad
c. an i operation
5. \qquad
6. (16 pts.) Determine the point group for each of the following molecules. Wedge and dashed 3D ${ }^{5}$. \qquad representations have been provided.

a.	b.
d.	d.

6. \qquad
7. \qquad
8. (12 pts.) Perform the indicated operations on the following molecules, and draw a wedge and
a. Perform a C_{3} on the z axis

b. Perform a reflection through a yz mirror plane

dash representation for the resulting view.
9. (10 pts.) Determine the irreducible representation for the following reducible representation.

$\mathrm{C}_{4 \mathrm{v}}$	E	$2 \mathrm{C}_{4}$	C_{2}	$2 \sigma_{\mathrm{v}}$	$2 \sigma_{\mathrm{d}}$		
A_{1}	1	1	1	1	1	z	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	1	-1	-1	R_{z}	
B_{1}	1	-1	1	1	-1		$\mathrm{x}^{2}-\mathrm{y}^{2}$
$\mathrm{~B}_{2}$	1	-1	1	-1	1		xy
E	2	0	-2	0	0	$(\mathrm{x}, \mathrm{y}),\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$(\mathrm{xz}, \mathrm{yz})$
Γ	5	-1	1	-1	3		

5. (10 pt.) Determine the number of CO stretching bands that you would expect to see in the IR spectrum of $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Cl}$. Rhenium pentacarbonyl chloride is in the $\mathrm{C}_{4 \mathrm{v}}$ point group.

6. a. (3 pts. each) Determine whether the following orbitals would be bonding or antibonding.
b. (2 pts. each) Determine whether the orbitals are gerade or ungerade

i.	MO made from two p_{z} orbitals	ii.
iii.	MO made from two s orbitals	iv.

7. The following MO cartoon represents an orbital formed from the interaction of two $\mathrm{d}_{\mathrm{z} 2}$ orbitals.

a. (8 pts.) Explain why this is a bonding orbital
b.

c.

(4 pts.) A cartoon representation of two d_{xz} orbitals is drawn to the left. The MO's that form from these orbitals would have what type of symmetry (σ, π, etc.)
(4 pts.) A cartoon representation of two $\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$ orbitals is drawn to the left. The MO's that form from these orbitals would have what type of symmetry (σ, π, etc.)

Point Group Assignment Tree

$$
\left(\begin{array}{c}
\begin{array}{c}
\text { number of irreducible } \\
\text { representations of a given } \\
\text { type needed }
\end{array}
\end{array}\right)=\frac{1}{\text { order }} \Sigma_{\text {classes }}\binom{\# \text { operations }}{\text { in class }}\binom{x \text { of the irreducible }}{\text { representation }}\binom{\chi \text { of the reducible }}{\text { representation }}
$$

