- 1. (12 pts.) Describe what each of the following symmetry operations are.
 - a. a C_3 operation

1. _____

b. a σ_v operation

3.

c. an S₄ operation

4. _____

2. (16 pts.) Determine the point group for each of the following molecules. Wedge and dashed 3D representations have been provided.

a. CI CI CI CI CI

b. H BrWWC Br

d. CINIP CH₃

d. o=c CI

3. (12 pts.) Perform the indicated operations on the following molecules, and draw a 3D representation, using wedge and dash notation where appropriate, for the resulting view.

a. Perform a C₂ on the x axis that goes through the Co atom

b. Perform an inversion through Fe atom

c. Perform a reflection through the xz plane that contains the nitrogen atom

4. (10 pts.) Determine the irreducible representation for the reducible representation listed at the bottom of the following character table.

T_{d}	E	8 C ₃	$3 C_2$	$6 \mathrm{S}_4$	$6 \sigma_{ m d}$		
A_1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
Е	2	-1	2	0	0		$2z^2 - x^2 - y^2, x^2 - y^2$
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)
Γ	6	3	2	-2	0		

- 5. (10 pt.) a. Determine the reducible representation for the C-Cl stretching vibrations for CH₂Cl₂.
 - b. Determine the irreducible representations for the C–Cl stretching vibrations.
 - c. Determine the number of C–Cl stretching bands that you would expect to see in the IR spectrum of CH_2Cl_2 . The molecule is in the $C_{2\nu}$ point group.

$\mathrm{C}_{2\mathrm{v}}$	E	C_2	$\sigma_{v}(xz)$	$\sigma_{v}(yz)$		
A_1	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1	$R_{\rm z}$	xy
B_1	1	-1	1	-1	x, R _y	XZ
B_2	1	-1	-1	1	y, R _x	yz

Point Group Assignment Tree

$$\begin{pmatrix} \text{number of irreducible} \\ \text{representations of a given} \\ \text{type needed} \end{pmatrix} = \frac{1}{\text{order}} \sum_{\text{classes}} \begin{pmatrix} \text{\# operations } \\ \text{in class} \end{pmatrix} \begin{pmatrix} \chi \text{ of the irreducible} \\ \text{representation} \end{pmatrix} \begin{pmatrix} \chi \text{ of the reducible} \\ \text{representation} \end{pmatrix}$$