\qquad

1. (12 pts.) Describe what each of the following symmetry operations are.
a. a C_{3} operation
2. \qquad
3. \qquad
b. a σ_{v} operation
4. \qquad
c. an S_{4} operation
5. \qquad
6. \qquad
7. (16 pts.) Determine the point group for each of the following molecules. Wedge and dashed 3 D representations have been provided.

a.	b.
d.	d.

3. (12 pts.) Perform the indicated operations on the following molecules, and draw a 3D representation, using wedge and dash notation where appropriate, for the resulting view.
a. Perform a_{2} on the x axis that goes through the Co atom

b. Perform an inversion through Fe atom

c. Perform a reflection through the xz plane that contains the nitrogen atom

4. (10 pts.) Determine the irreducible representation for the reducible representation listed at the bottom of the following character table.

T_{d}	E	$8 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	$6 \mathrm{~S}_{4}$	$6 \sigma_{\mathrm{d}}$		
A_{1}	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	1	-1	-1		
E	2	-1	2	0	0		$2 \mathrm{z}^{2}-\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{x}^{2}-\mathrm{y}^{2}$
$\mathrm{~T}_{1}$	3	0	-1	1	-1	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}\right)$	
T_{2}	3	0	-1	-1	1	$(\mathrm{x}, \mathrm{y}, \mathrm{z})$	$(\mathrm{xy}, \mathrm{xz}, \mathrm{yz})$
$\boldsymbol{\Gamma}$	6	3	2	-2	0		

5. (10 pt.) a. Determine the reducible representation for the $\mathrm{C}-\mathrm{Cl}$ stretching vibrations for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
b. Determine the irreducible representations for the $\mathrm{C}-\mathrm{Cl}$ stretching vibrations.
c. Determine the number of $\mathrm{C}-\mathrm{Cl}$ stretching bands that you would expect to see in the IR spectrum of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The molecule is in the $\mathrm{C}_{2 \mathrm{v}}$ point group.

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Point Group Assignment Tree

$\left(\begin{array}{c}\begin{array}{c}\text { number of irreducible } \\ \text { representations of a given } \\ \text { type needed }\end{array}\end{array}\right)=\frac{1}{\text { order }} \Sigma_{\text {classes }}\binom{\#$ operations }{ in class }$\left(\begin{array}{c}\chi \begin{array}{c}\text { of the irreducible } \\ \text { representation }\end{array}\end{array}\right)\binom{\chi$ of the reducible }{ representation }

