\qquad

1. (12 pts.) Describe what each of the following symmetry operations are.
a. an S_{3} operation
2. \qquad
3. \qquad
b. a σ_{h} operation
4. \qquad
c. a C_{2} operation
5. \qquad
6. \qquad
7. (16 pts.) Determine the point group for each of the following molecules. Wedge and dashed

a.	b.
d.	d.

6. \qquad

3D representations have been provided.
a. Perform a_{4} on the y axis that goes through the Pt atom

b. Perform an inversion through Re atom

c. Perform a reflection through the yz plane that contains the rhenium atom

3. (12 pts.) Perform the indicated operations on the following molecules, and draw a 3D representation, using wedge and dash notation where appropriate, for the resulting view.
4. (10 pts .) Determine the irreducible representation for the reducible representation listed at the bottom of the following character table.

T_{d}	E	$8 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	$6 \mathrm{~S}_{4}$	$6 \sigma_{\mathrm{d}}$				
A_{1}	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$		
$\mathrm{~A}_{2}$	1	1	1	-1	-1				
E	2	-1	2	0	0		$2 \mathrm{z}^{2}-\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{x}^{2}-\mathrm{y}^{2}$		
$\mathrm{~T}_{1}$	3	0	-1	1	-1	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}\right)$			
T_{2}	3	0	-1	-1	1	$(\mathrm{x}, \mathrm{y}, \mathrm{z})$	$(\mathrm{xy}, \mathrm{xz}, \mathrm{yz})$		
Γ	7	1	3	1	3				

5. (10 pt.) Determine the number of CO stretching bands that you would expect to see in the IR spectrum of benzene tricarbonyl chromium. The molecule is in the $\mathrm{C}_{3 \mathrm{v}}$ point group.

6. In class, we determined that the total number of IR-active vibrational modes for water was three. (a. 8 pts.) Determine the number of $\mathrm{O}-\mathrm{H}$ stretching modes that are IR active for water, and (b. 2 pts.) compare this result to the conclusion that we reached in class; that is, are the results the same or different, explain.

$\mathrm{C}_{2 \mathrm{~h}}$	E	C_{2}	i	σ_{h}		
A_{g}	1	1	1	1	R_{z}	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}, \mathrm{xy}$
B_{g}	1	-1	1	-1	$\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}$	xz, yz
A_{u}	1	1	-1	-1	z	
B_{u}	1	-1	-1	1	x, y	

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

$\mathrm{C}_{3 \mathrm{v}}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$		
A_{1}	1	1	1	z	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	R_{z}	
E	2	-1	0	$(\mathrm{x}, \mathrm{y}),\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right),(\mathrm{xz}, \mathrm{yz})$

Point Group Assignment Tree

$$
\left(\begin{array}{c}
\begin{array}{c}
\text { number of irreducible } \\
\text { representations of a given } \\
\text { type needed }
\end{array}
\end{array}\right)=\frac{1}{\text { order }} \Sigma_{\text {classes }}\binom{\# \text { operations }}{\text { in class }}\binom{x \text { of the irreducible }}{\text { representation }}\binom{\chi \text { of the reducible }}{\text { representation }}
$$

