Name CHEM 0211 (Adv. Inorganic)	Test 2 (3/7) Spring 2014
1. (12 pts.) Describe what each of the following symmetry operations are. a. an S_3 operation	1
b. a σ_h operation	2
	3
c. a C_2 operation	4

5.

2. (16 pts.) Determine the point group for each of the following molecules. Wedge and dashed

3D representations have been provided.

- 3. (12 pts.) Perform the indicated operations on the following molecules, and draw a 3D representation, using wedge and dash notation where appropriate, for the resulting view.
- 4. (10 pts.) Determine the irreducible representation for the reducible representation listed at the bottom of the following character table.

T_{d}	Е	8 C ₃	$3 C_2$	$6 \mathrm{S}_4$	$6 \sigma_{d}$		
A_1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
Е	2	-1	2	0	0		$2z^2 - x^2 - y^2, x^2 - y^2$
T_1	3	0	-1	1	-1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1	1	(x, y, z)	(xy, xz, yz)
Γ	7	1	3	1	3		

5. (10 pt.) Determine the number of CO stretching bands that you would expect to see in the IR spectrum of benzene tricarbonyl chromium. The molecule is in the C_{3v} point group.

6. In class, we determined that the total number of IR-active vibrational modes for water was three. (a. 8 pts.) Determine the number of O–H stretching modes that are IR active for water, and (b. 2 pts.) compare this result to the conclusion that we reached in class; that is, are the results the same or different, explain.

C_{2h}	Е	C_2	i	$\sigma_{\rm h}$		
Ag	1	1	1	1	Rz	x^2 , y^2 , z^2 , xy
Bg	1	-1	1	-1	R _x , R _y	xz, yz
Au	1	1	-1	-1	Z	
Bu	1	-1	-1	1	х, у	

$\mathrm{C}_{2\mathrm{v}}$	Ε	C_2	σ _v (xz)	$\sigma_v(yz)$		
A ₁	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1	Rz	xy
B ₁	1	-1	1	-1	x, R _y	xz
B_2	1	-1	-1	1	y, R _x	yz

C_{3v}	Е	$2 C_3$	$3 \sigma_v$		
A_1	1	1	1	Z	$x^2 + y^2, z^2$
A_2	1	1	-1	R_z	
Е	2	-1	0	$(x, y), (R_x, R_y)$	$(x^2 - y^2, xy), (xz, yz)$

Point Group Assignment Tree

 $\begin{pmatrix} \text{number of irreducible} \\ \text{representations of a given} \\ \text{type needed} \end{pmatrix} = \frac{1}{\text{order}} \Sigma_{\text{classes}} \begin{pmatrix} \# \text{ operations} \\ \text{in class} \end{pmatrix} \begin{pmatrix} \chi \text{ of the irreducible} \\ \text{representation} \end{pmatrix} \begin{pmatrix} \chi \text{ of the reducible} \\ \text{representation} \end{pmatrix}$