Name CHEM 0211 (Adv Inorganic)	Test 2 (10/29) Fall 2010
1. When orbitals on two atoms interact constructively and destructively they form molecular orbitals.	1
a. (8 pts.) Label the following orbitals as σ , σ^* , π , or π^* .	
b. (10 pts.) Briefly explain (which is higher/lower and why) the relative energies of the orbitals. (Compare orbitals in a given row.)	ne 2
	3
	4
	5
	6
	7
	8
	9
	10

2. (8 pts.) In a diatomic molecule, the p orbitals can interact to form two different types of molecular orbitals. One set of molecular orbitals has σ symmetry. The other set has π symmetry. Draw examples of the σ and σ^* orbitals. Draw only one orbital for each type.

i. σ ii. σ*

3. (8 pts.) In a diatomic molecule, the p orbitals can interact to form two different types of molecular orbitals. One set of molecular orbitals has σ symmetry. The other set has π symmetry. Draw examples of the π and π^* orbitals. Draw only one orbital for each type.

iii. π iv. π^*

a. The term "mixing" refers to the mixing of what orbitals? (Describe briefly)

b. Why is the order of the orbitals different on the two molecules?

- 5. An MO diagram for $\mathrm{CN}\text{-}$ is drawn below.
- a. (3 pts.) Write "LUMO" next to the appropriate molecular orbital.
- b. (3 pts.) Write "HOMO" next to the appropriate molecular orbital.
- c. (4 pts.) If CN^- were to accept electrons, at which end of the molecule (the C or the N) would the new bond form?
- d. Describe what factors you would consider when deciding whether the HOMO was primarily N or C based.

6. (10 pts.) When deciding whether atomic orbitals will interact to form bonding and antibonding molecular orbitals, what two properties of the atomic orbitals must be considered?

- 7. A Kekulé structure of H₂S is drawn below. The molecule belongs to the C_{2v} point group. a. (6 pts.) Determine the reducible representations for the group orbitals formed from the H atoms' atomic orbitals. (The C_{2v} character table is on the next page.) H
 - b. (6 pts.) Determine the irreducible representations for the group orbitals formed from the H atoms' atomic orbitals.

c. (6 pts.) Determine the irreducible representations for the S atom's 3s and 3p atomic orbitals.

d. Draw an MO diagram for H_2S on the following page.

$\mathrm{C}_{2\mathrm{v}}$	Е	C_2	$\sigma_v(xz)$	$\sigma_v(yz)$		
A ₁	1	1	1	1	Z	x^2, y^2, z^2
A_2	1	1	-1	-1	Rz	ху
B_1	1	-1	1	-1	x, R _y	XZ
B_2	1	-1	-1	1	y, R _x	yz