1. (12 pts.) In order to form an MO from AO's three things need to be true about the AO's. Those three things are...
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. (10 pts.) In general, p_{x} orbitals interact with other p_{x} orbitals, they do not tend to interact with p_{y} or p_{z} orbitals. Explain.
7. \qquad
8. \qquad
9. (24 pts.) A partial MO diagram for HF is drawn below.

a. Complete the diagram by labeling the atomic orbitals and adding the appropriate number of e^{-}'s to the atomic and molecular orbitals.
b. Label the LUMO.
c. Label the HOMO.
d. i. If an electron donor reacts with HF, to which orbital would the e^{-}'s be added?
d. ii. The orbital that is receiving the e^{-}'s in d.i. would more strongly resemble which atom, the F or the H ?
e. Label bonding, non-bonding, and antibonding orbitals.
10. (16 pts.) MO diagrams for B_{2} and O_{2} are drawn below. Note that even though the energies of the orbitals are not drawn to scale, the position of the $\sigma_{3 g}$ orbital is correctly drawn below the π orbitals on O_{2} and the $\sigma_{3 g}$ orbital is drawn above the π orbitals on B_{2}. The changing position is a result of differing amounts of mixing on B_{2} as compared to O_{2}.
B
B_{2}
$-\sigma^{*}{ }_{3 u}$
$\pi *_{39}-\pi *_{49}$

0

$$
{ }_{\pi *_{3 g}} \frac{1}{1} \frac{1}{\pi *_{4 g}}
$$

$$
\frac{4}{4}+1
$$

$$
2 p
$$

 $4 \sigma_{29}$
a. The term "mixing" refers to the mixing of what orbitals?
b. Why is the order of the orbitals different on the two molecules, in other words, why is the mixing strong in one molecule as compared to the other?
5. (16 pts.) The point group for BeF_{2} is $\mathrm{D}_{\propto \mathrm{oh}}$, but when determining the symmetry of the group orbitals formed from the F atoms it is more convenient to use the $\mathrm{D}_{2 \mathrm{~h}}$ point group.

$\mathrm{D}_{2 \mathrm{~h}}$	E	$\mathrm{C}_{2}(\mathrm{z})$	$\mathrm{C}_{2}(\mathrm{y})$	$\mathrm{C}_{2}(\mathrm{x})$	i	$\sigma_{\mathrm{h}}(\mathrm{xy})$	$\sigma_{\mathrm{d}}(\mathrm{xz})$	$\sigma_{\mathrm{d}}(\mathrm{yz})$		
A_{g}	1	1	1	1	1	1	1	1		$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~B}_{1 \mathrm{~g}}$	1	1	-1	-1	1	1	-1	-1	R_{z}	xy
$\mathrm{B}_{2 \mathrm{~g}}$	1	-1	1	-1	1	-1	1	-1	R_{y}	xz
$\mathrm{B}_{3 \mathrm{~g}}$	1	-1	-1	1	1	-1	-1	1	R_{x}	yz
A_{u}	1	1	1	1	-1	-1	-1	-1		
$\mathrm{~B}_{1 \mathrm{u}}$	1	1	-1	-1	-1	-1	1	1	z	
$\mathrm{B}_{2 \mathrm{u}}$	1	-1	1	-1	-1	1	-1	1	y	
$\mathrm{B}_{3 \mathrm{u}}$	1	-1	-1	1	-1	1	1	-1	x	

A cartoon representation of the p_{y} orbitals on the F atoms is drawn below.

a. Determine the reducible representation for the group orbitals formed from the F atoms' p_{y} orbitals.
b. Determine the irreducible representations for the group orbitals formed from the F atoms' p_{y} orbitals.
6. (20 pts.) Create an MO diagram for BH_{3}. The energies for the B atom's 2 s and 2 p orbitals are -14.05 and -8.3 eV . The energy for the H atoms' 1 s orbital is -13.61 eV .

$\left(\begin{array}{c}\begin{array}{c}\text { number of irreducible } \\ \text { representations of a given } \\ \text { type needed }\end{array}\end{array}\right)=\frac{1}{\text { order }} \Sigma_{\text {classes }}\binom{\#$ operations }{ in class }$\binom{x$ of the irreducible }{ representation }$\binom{\chi$ of the reducible }{ representation }

$\mathrm{C}_{3 \mathrm{v}}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$		
A_{1}	1	1	1	z	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	R_{z}	
E	2	-1	0	$(x, y),\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right),(\mathrm{xz}, \mathrm{yz})$

$\mathrm{D}_{3 \mathrm{~h}}$	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	σ_{h}	$2 \mathrm{~S}_{3}$	$3 \sigma_{\mathrm{v}}$		
$\mathrm{A}_{1}{ }^{\prime}$	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}{ }^{\prime}$	1	1	-1	1	1	-1	R_{z}	
E^{\prime}	2	-1	0	2	-1	0	(x, y)	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)$
$\mathrm{A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1		
$\mathrm{~A}_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1	z	
$\mathrm{E}^{\prime \prime}$	2	-1	0	-2	1	0	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$(\mathrm{xz}, \mathrm{yx})$

