1. (15 pts.) In order to form an MO from AO's three things need to be true about the AO's. Those three things are...
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. (10 pts .) In a diatomic molecule, a 2 s orbital does not have the correct symmetry to interact with a $2 \mathrm{p}_{\mathrm{y}}$ orbital to form a molecular orbital. Draw the interaction between a 2 s and $2 p_{y}$ orbital and explain why this pair of orbitals cannot be used to make a molecular 6. \qquad orbital.
8. An incomplete MO diagram for C_{2} is provided.
a. (6 pts.) Complete the diagram by labeling the AO's, labeling the MO's, and adding the appropriate number of e-'s to the orbitals.
b. (4 pts.) Label the LUMO.
c. (4 pts.) Label the HOMO.
d. i. (6 pts.) If an electron donor reacts with C_{2}, to which orbital would the e-'s be added?

d. ii. (6 pts.) Would you expect the bond between
the carbon atoms to weaken if the C_{2} molecule accepted a pair of electrons? Explain.
9. (16 pts.) The point group for BeF_{2} is $\mathrm{D}_{\infty h}$, but when determining the symmetry of the group orbitals formed from the F atoms it is more convenient to use the $\mathrm{D}_{2 \mathrm{~h}}$ point group.

$\mathrm{D}_{2 \mathrm{~h}}$	E	$\mathrm{C}_{2}(\mathrm{z})$	$\mathrm{C}_{2}(\mathrm{y})$	$\mathrm{C}_{2}(\mathrm{x})$	i	$\sigma_{\mathrm{h}}(\mathrm{xy})$	$\sigma_{\mathrm{d}}(\mathrm{xz})$	$\sigma_{\mathrm{d}}(\mathrm{yz})$		
A_{g}	1	1	1	1	1	1	1	1		$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~B}_{1 \mathrm{~g}}$	1	1	-1	-1	1	1	-1	-1	R_{z}	xy
$\mathrm{B}_{2 \mathrm{~g}}$	1	-1	1	-1	1	-1	1	-1	R_{y}	xz
$\mathrm{B}_{3 \mathrm{~g}}$	1	-1	-1	1	1	-1	-1	1	R_{x}	yz
A_{u}	1	1	1	1	-1	-1	-1	-1		
$\mathrm{~B}_{1 \mathrm{u}}$	1	1	-1	-1	-1	-1	1	1	z	
$\mathrm{B}_{2 \mathrm{u}}$	1	-1	1	-1	-1	1	-1	1	y	
$\mathrm{B}_{3 \mathrm{u}}$	1	-1	-1	1	-1	1	1	-1	x	

a. (6 pts) Determine the reducible representation for the group orbitals formed from the F atoms' $2 \mathrm{p}_{\mathrm{x}}$ orbitals.
b. (6pts.) Determine the irreducible representation for the group orbitals formed from the F atoms' $2 \mathrm{p}_{\mathrm{x}}$ orbitals.
c. (6 pts.) Which orbital(s) on Be can interact with with the group orbitals formed from the F atoms' $2 \mathrm{p}_{\mathrm{x}}$ orbitals, explain.
5. Label the following molecular orbitals from an O_{2} molecule as (a. 8 pts .) bonding or antibonding, and (b. 8 pts.) g (gerade) or u (ungerade), and (c. 8 pts .) determine the symmetry of the molecular orbitals ($\sigma, п$, or δ) (the red dots represent the nuclei of the O atoms).

6. (12 pts.) Create an MO diagram for BH_{3}. The energy for the H atoms' 1 s orbitals is -13.61 eV .

The energies for the B 2s and 2p orbitals are -14.05 eV and -8.30 eV .

$\mathrm{C}_{3 \mathrm{v}}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$		
A_{1}	1	1	1	z	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	R_{z}	
E	2	-1	0	$(\mathrm{x}, \mathrm{y}),\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right),(\mathrm{xz}, \mathrm{yz})$

$\mathrm{C}_{3 \mathrm{~h}}$	E	$2 \mathrm{C}_{3}$	σ_{h}	$2 \mathrm{~S}_{3}$		
$\mathrm{~A}^{\prime}$	1	1	1	1	R_{z}	$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}^{\prime \prime}$	1	1	-1	-1	z	
E^{\prime}	2	-1	2	-1	(x, y)	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)$
$\mathrm{E}^{\prime \prime}$	2	-1	-2	1	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$(\mathrm{xz}, \mathrm{yz})$

$\mathrm{D}_{3 \mathrm{~h}}$	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	σ_{h}	$2 \mathrm{~S}_{3}$	$3 \sigma_{\mathrm{v}}$		
$\mathrm{A}_{1}{ }^{\prime}$	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}{ }^{\prime}$	1	1	-1	1	1	-1	R_{z}	
E^{\prime}	2	-1	0	2	-1	0	(x, y)	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)$
$\mathrm{A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1		
$\mathrm{~A}_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1	z	
$\mathrm{E}^{\prime \prime}$	2	-1	0	-2	1	0	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}\right)$	$(\mathrm{xz}, \mathrm{yx})$

$\left(\begin{array}{c}\begin{array}{c}\text { number of irreducible } \\ \text { representations of a given } \\ \text { type needed }\end{array}\end{array}\right)=\frac{1}{\text { order }} \Sigma_{\text {classes }}\binom{\#$ operations }{ in class }$\binom{x$ of the irreducible }{ representation }$\binom{\chi$ of the reducible }{ representation }

