NameTest 3 (1)CHEM 0211 (Adv. Inorganic)Fall 201	· ·
1. (15 pts.) In order to form an MO from AO's three things need to be true about the AO's. Those three things are	1
	2
	3
	4
2. (10 pts.) In a diatomic molecule, a 2s orbital does not have the correct symmetry to	5
interact with a 2py orbital to form a molecular orbital. Draw the interaction between a 2s	6

- 3. An incomplete MO diagram for C_2 is provided.
- a. (6 pts.) Complete the diagram by labeling the AO's, labeling the MO's, and adding the appropriate number of e-'s to the orbitals.
- b. (4 pts.) Label the LUMO.
- c. (4 pts.) Label the HOMO.
- d. i. (6 pts.) If an electron donor reacts with C_2 , to which orbital would the e-'s be added?

d. ii. (6 pts.) Would you expect the bond between the carbon atoms to weaken if the C_2 molecule accepted a pair of electrons? Explain.

4. (16 pts.) The point group for BeF_2 is $D_{\infty h}$, but when determining the symmetry of the group orbitals formed from the F atoms it is more convenient to use the D_{2h} point group.

									1	0 1
D_{2h}	Е	$C_2(z)$	C ₂ (y)	C ₂ (x)	i	$\sigma_h(xy)$	$\sigma_{d}(xz)$	$\sigma_{\rm d}({\rm yz})$		
Ag	1	1	1	1	1	1	1	1		x^2, y^2, z^2
B_{1g}	1	1	-1	-1	1	1	-1	-1	R_z	ху
B_{2g}	1	-1	1	-1	1	-1	1	-1	R_y	XZ
B_{3g}	1	-1	-1	1	1	-1	-1	1	R_x	yz
Au	1	1	1	1	-1	-1	-1	-1		
B_{1u}	1	1	-1	-1	-1	-1	1	1	Z	
B_{2u}	1	-1	1	-1	-1	1	-1	1	У	
B_{3u}	1	-1	-1	1	-1	1	1	-1	х	

a. (6 pts) Determine the reducible representation for the group orbitals formed from the F atoms' $2p_x$ orbitals.

b. (6pts.) Determine the irreducible representation for the group orbitals formed from the F atoms' $2p_x$ orbitals.

c. (6 pts.) Which orbital(s) on Be can interact with with the group orbitals formed from the F atoms' $2p_x$ orbitals, explain.

5. Label the following molecular orbitals from an O_2 molecule as (a. 8 pts.) bonding or antibonding, and (b. 8 pts.) g (gerade) or u (ungerade), and (c. 8 pts.) determine the symmetry of the molecular orbitals (σ , π , or δ) (the red dots represent the nuclei of the O atoms).

6. (12 pts.) Create an MO diagram for BH_3 . The energy for the H atoms' 1s orbitals is -13.61 eV. The energies for the B 2s and 2p orbitals are -14.05 eV and -8.30 eV.

$\mathrm{C}_{3\mathrm{v}}$	Е	$2 \mathrm{C}_3$	$3 \sigma_v$		
A1	1	1	1	Z	$x^2 + y^2, z^2$
A_2	1	1	-1	Rz	
Е	2	-1	0	$(x, y), (R_x, R_y)$	$(x^2 - y^2, xy), (xz, yz)$

$\mathrm{C}_{3\mathrm{h}}$	Е	$2 C_3$	σh	$2 S_3$		
A'	1	1	1	1	Rz	$x^2 + y^2, z^2$
A''	1	1	-1	-1	Z	
E'	2	-1	2	-1	(x,y)	$(x^2 - y^2, xy)$
E''	2	-1	-2	1	(R_x, R_y)	(xz, yz)

D_{3h}	Е	$2C_3$	$3C_2$	$\sigma_{\rm h}$	$2S_3$	$3\sigma_{\rm v}$		
A1'	1	1	1	1	1	1		$x^2 + y^2, z^2$
A2'	1	1	-1	1	1	-1	Rz	
E'	2	-1	0	2	-1	0	(x,y)	$(x^2 - y^2, xy)$
A1"	1	1	1	-1	-1	-1		
A2"	1	1	-1	-1	-1	1	z	
E''	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yx)

 $\begin{pmatrix} \text{number of irreducible} \\ \text{representations of a given} \\ \text{type needed} \end{pmatrix} = \frac{1}{\text{order}} \Sigma_{\text{classes}} \begin{pmatrix} \text{\# operations} \\ \text{in class} \end{pmatrix} \begin{pmatrix} \chi \text{ of the irreducible} \\ \text{representation} \end{pmatrix} \begin{pmatrix} \chi \text{ of the reducible} \\ \text{representation} \end{pmatrix}$