1. (15 pts.) In order to form a MO from AO's three things need to be true about the AO's. Those three things are...
2. (10 pts.) In a diatomic molecule, a $2 p_{\mathrm{x}}$ orbital does not have the correct symmetry to interact with a $2 p_{z}$ orbital to form a molecular orbital. Draw the interaction between a $2 p_{x}$ and $2 p_{z}$ orbital and explain why this pair of orbitals cannot be used to make a molecular orbital.
3. (20 pts.) Draw a representations of the following molecular orbitals on a diatomic molecule

a. a π bonding orbital formed from two d orbitals	b. a π bonding orbital formed from two p orbitals

c. a σ bonding orbital formed from two p orbitals
d. a σ anti-bonding orbital formed from two s orbitals
4. (30 pts) Label the following MO's as bonding or anti-bonding; σ, $п$, or δ symmetry; and list the two atomic orbitals they are formed from. The two atoms are on the z axis equidistant from the origin.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. (20 pts) Alkaline earth hydrides with the formula $\mathrm{MH}_{2}\left(\mathrm{BeH}_{2}, \mathrm{MgH}_{2}, \mathrm{CaH}_{2}\right)$ typically exist as network solids, but BeH_{2} can be formed as discrete molecules as a dilute gas. The MO digram for BeH_{2} is drawn below.
a. Sketch the lower energy $b_{1 u}$ molecular orbital, which is formed from the $\mathrm{Be} 2 \mathrm{p}_{\mathrm{z}}$ and the H atoms' $\mathrm{B}_{1 \mathrm{u}}$ symmetry SALC.

Be
BeH_{2}
2 H
7. a. (10 pts.) What is the acronym HOMO an abbreviation for?
b. (10 pts.) What is the acronym LUMO an abbreviation for?
8. (40 pts.) Draw an MO diagram for $\mathrm{H}_{2} \mathrm{~S}$. (a. 9 pts .) Determine the point group for $\mathrm{H}_{2} \mathrm{~S}$. (b. 9 pts .)

Determine the symmetry (the irreducible representations) of the 3 s and 3 p orbitals on S. (c. 9 pts.) Determine the symmetry of the group orbitals formed from the two H atom 1s orbitals. (d. 9 pts.) Sketch an MO diagram clearly indicating, like the one above, which orbitals are interacting. Remember to label your orbitals: use orbital names and symmetry labels for the atomic orbitals, and use symmetry labels for the molecular orbitals. (e. 4 pts.) Label the HOMO and the LUMO. The energies for the S atom's 3 s and 3 p orbitals are -22.7 and -11.6 eV respectively, and the energy for the H atom's 1 s orbital is -13.6 eV .
b. Sketch the lower energy ag_{g} molecular orbital, which is formed from the Be 2s orbital and the H atoms' Ag_{g} symmetry SALC.

