Name _____ CHEM 0211 (Adv. Inorganic)

1. (15 pts.) In order to form a MO from AO's three things need to be true about the AO's. Those three things are...

2. (10 pts.) In a diatomic molecule, a $2p_x$ orbital does not have the correct symmetry to interact with a $2p_z$ orbital to form a molecular orbital. Draw the interaction between a $2p_x$ and $2p_z$ orbital and explain why this pair of orbitals cannot be used to make a molecular orbital.

3. (20 pts.) Draw a representations of the following molecular orbitals on a diatomic molecule

a. a π bonding orbital formed from two d orbitals	b. a π bonding orbital formed from two p orbitals
c. a σ bonding orbital formed from two p orbitals	d. a $\boldsymbol{\sigma}$ anti-bonding orbital formed from two s orbitals

4. (30 pts) Label the following MO's as bonding or anti-bonding; σ , π , or δ symmetry; and list the two atomic orbitals they are formed from. The two atoms are on the z axis equidistant from the origin.

- 6. (20 pts) Alkaline earth hydrides with the formula MH₂ (BeH₂, MgH₂, CaH₂) typically exist as network solids, but BeH₂ can be formed as discrete molecules as a dilute gas. The MO digram for BeH₂ is drawn below.
- a. Sketch the lower energy b_{1u} molecular orbital, which is formed from the Be $2p_z$ and the H atoms' B_{1u} symmetry SALC.

7. a. (10 pts.) What is the acronym HOMO an abbreviation for?

- b. (10 pts.) What is the acronym LUMO an abbreviation for?
- 8. (40 pts.) Draw an MO diagram for H_2S . (**a.** 9 pts.) Determine the point group for H_2S . (**b.** 9 pts.) Determine the symmetry (the irreducible representations) of the 3s and 3p orbitals on S. (**c.** 9 pts.) Determine the symmetry of the group orbitals formed from the two H atom 1s orbitals. (**d.** 9 pts.) Sketch an MO diagram clearly indicating, like the one above, which orbitals are interacting. Remember to label your orbitals: use orbital names and symmetry labels for the atomic orbitals, and use symmetry labels for the molecular orbitals. (**e.** 4 pts.) Label the HOMO and the LUMO. The energies for the S atom's 3s and 3p orbitals are -22.7 and -11.6 eV respectively, and the energy for the H atom's 1s orbital is -13.6 eV.

b. Sketch the lower energy a_g molecular orbital, which is formed from the Be 2s orbital and the H atoms' A_g symmetry SALC.