1. (15 pts.) In order to form an MO from AO's three things need to be true about the AO's. Those three things are...
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. (a. 8 pts.) Determine whether the following molecular orbitals are bonding or antibonding. (c. 8 pts.) Determine the symmetry of the molecular orbitals (σ, Π, δ)
7. \qquad
(200
8. \qquad
9. (10 pts .) A 2s orbital does not have the correct symmetry to interact with a $d_{x z}$ orbital. Explain why constructive and destructive interference is not possible between these two orbitals. You may use drawing to help make your point.
10. An incomplete MO diagram for NO^{+}is provided.
a. (6 pts.) Complete the diagram by labeling the AO's (e.g., $1 \mathrm{~s}, 2 \mathrm{~s}$, etc), labeling the MO's (e.g., σ, Π^{*}, etc) and adding the appropriate number of e^{-}'s to the orbitals.
b. (4 pts.) Label the LUMO.
c. (4 pts.) Label the HOMO.
d. i. (6 pts .) If an electron donor reacts with NO^{+}, to which orbital would the e^{-}s be added?

d. ii. (6 pts.) The orbital that is receiving the $\mathrm{e}^{- \text {'s }}$ in d.i. would more strongly resemble which atom, the N or the O? Explain.
11. (16 pts.) The point group for BeF_{2} is $\mathrm{D}_{\infty h}$, but when determining the symmetry of the group orbitals formed from the F atoms it is more convenient to use the $\mathrm{D}_{2 \mathrm{~h}}$ point group.

$\mathrm{D}_{2 \mathrm{~h}}$	E	$\mathrm{C}_{2}(\mathrm{z})$	$\mathrm{C}_{2}(\mathrm{y})$	$\mathrm{C}_{2}(\mathrm{x})$	i	$\sigma_{\mathrm{h}}(\mathrm{xy})$	$\sigma_{d}(\mathrm{xz})$	$\sigma_{\mathrm{d}}(\mathrm{yz})$		
A_{g}	1	1	1	1	1	1	1	1		$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~B}_{1 \mathrm{~g}}$	1	1	-1	-1	1	1	-1	-1	R_{z}	xy
$\mathrm{B}_{2 \mathrm{~g}}$	1	-1	1	-1	1	-1	1	-1	R_{y}	xz
$\mathrm{B}_{3 \mathrm{~g}}$	1	-1	-1	1	1	-1	-1	1	R_{x}	yz
A_{u}	1	1	1	1	-1	-1	-1	-1		
$\mathrm{~B}_{1 \mathrm{u}}$	1	1	-1	-1	-1	-1	1	1	z	
$\mathrm{B}_{2 \mathrm{u}}$	1	-1	1	-1	-1	1	-1	1	y	
$\mathrm{B}_{3 \mathrm{u}}$	1	-1	-1	1	-1	1	1	-1	x	

a. (6 pts) Determine the reducible representation for the group orbitals
 formed from the F atoms' $2 \mathrm{p}_{\mathrm{z}}$ orbitals.

b. (6pts.) Determine the irreducible representation for the group orbitals formed from the F atoms' $2 \mathrm{p}_{\mathrm{z}}$ orbitals.
c. (6 pts .) Which orbital(s) on Be can interact with with the group orbitals from from the F atoms $2 p_{z}$ orbitals, explain.
6. (12 pts.) Create an MO diagram for CH_{4}. The character table for the T_{d} point group is included below. The energy for the H atoms' 1 s orbitals is -13.61 eV . The energies for the C 2 s and 2 p orbitals are -19.43 eV and -10.66 eV .

T_{d}	E	$8 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	$6 \mathrm{~S}_{4}$	$6 \sigma_{\mathrm{d}}$		
A_{1}	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	1	-1	-1		
E	2	-1	2	0	0		$2 \mathrm{z}^{2}-\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{x}^{2}-\mathrm{y}^{2}$
$\mathrm{~T}_{1}$	3	0	-1	1	-1	$\left(\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}\right)$	
T_{2}	3	0	-1	-1	1	$(\mathrm{x}, \mathrm{y}, \mathrm{z})$	$(\mathrm{xy}, \mathrm{xz}, \mathrm{yz})$

