(13) Today

Next Class (14)
4.1 Symmetry elements and Operations
4.2 Point Groups
4.3 Properties and Representations of Groups
(15) Second Class from Today
4.3 Properties and Representations of Groups
4.4 Uses of Character Tables
4.3 Properties and Representations of Groups

Third Class from Today (16)
4.4 Uses of Character Tables

Tips for finding mirror planes and axes of rotation

Look along bonds

$$
\begin{gathered}
C_{3} \text { or } \frac{1}{3} \text { of } \sigma \\
\text { circle }
\end{gathered}
$$

Look along lines that bisect bond angles

Used simplified structures

C_{z}
2_{5}

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{2 \mathrm{v}}$	Fc	$\mathrm{D}_{5 \mathrm{~d}}$
PCl_{3}	$\mathrm{C}_{3 \mathrm{v}}$	BrF_{5}	$\mathrm{C}_{4 \mathrm{v}}$
HCN	$\mathrm{C}_{\infty \mathrm{v}}$	PPh_{3}	C_{3}
$\mathrm{PtCl}_{4}{ }^{2-}$	$\mathrm{D}_{4 \mathrm{~h}}$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{2 \mathrm{v}}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	$\mathrm{D}_{\infty \mathrm{h}}$		

In mathematics, a group is a set combined with an operation that has the specific mathematical properties properties
the operation combines any two elements of the set to form a third
element which is part of the original set
other ways of saying this:
a set must be closed under the operation
there must be closure with respect to the operation
operating on elements of the set must satisfy the associative property
there must be an identity element in the set that when operated on by the operation along with any element of the set returns the original element
the operation in the set must be invertible; that is, the set must contain elements such that the operation on two elements in the set produce the identity element

It is a collection of symmetry operations with at least one fixed point that satisfies the criteria of being a mathematical "group"
$\mathrm{C}_{2 \mathrm{v}}$
The set is the set of symmetry operations.
The operation is the symmetry operations operating on each other.

$$
\begin{gathered}
\mathrm{C}_{2} \times \sigma_{\mathrm{v}(\mathrm{xz})}=\sigma_{\mathrm{v}(\mathrm{yz})} \quad \mathrm{C}_{2} \mathrm{x} \sigma_{\mathrm{v}(\mathrm{yz})}=\sigma_{\mathrm{v}(\mathrm{xz})} \quad \sigma_{\mathrm{v}(\mathrm{xz})} \mathrm{x} \sigma_{\mathrm{v}(\mathrm{yz})}=\mathrm{C}_{2} \\
\mathrm{C}_{2} \times\left(\sigma_{\mathrm{v}(\mathrm{xz})} \mathrm{x} \mathrm{C}_{2}\right)=\sigma_{\mathrm{v}(\mathrm{xz})} \quad\left(\mathrm{C}_{2} \mathrm{x} \sigma_{\mathrm{v}(\mathrm{xz})}\right) \times \mathrm{C}_{2}=\sigma_{\mathrm{v}(\mathrm{xz})} \\
\mathrm{E} \times \mathrm{C}_{2}=\mathrm{C}_{2} \\
\mathrm{C}_{2} \times \mathrm{C}_{2}=\mathrm{E}
\end{gathered}
$$

Ways of Representing Symmetry Operations
$C_{2 v}$

(x, y, z)
Matrix representations

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

1×1 transformation matrices for each individual axis

1	-1	1	-1	x
1	-1	-1	1	y
1	1	1	1	z

The traces of the 3×3 transformation matices

3	-1	1	1

Transformation Matrices

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]=\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Number of columns in the first matrix must equal number of rows in the second

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{l}
-1(x)+0(y)+0(z) \\
0(x)+-1(y)+0(z) \\
0(x)+0(y)+-1(z)
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{l}
-x \\
-y \\
-z
\end{array}\right]}
\end{aligned}
$$

Ways of representing symmetry operations

$\mathrm{C}_{2 \mathrm{v}}$ operations: $\mathrm{E}, \mathrm{C}_{2}, \sigma_{\mathrm{v}}(\mathrm{xz}), \sigma_{\mathrm{v}}(\mathrm{yz})$

E
C_{2}
$\sigma_{v}(x z)$
$\sigma_{v}(y z)$

Matrix representations

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Character Tables

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

1×1 transformation matrices for each individual axis in the $\mathrm{C}_{2 v}$ point group

1	-1	1	-1	x
1	-1	-1	1	y
1	1	1	1	z

Character Tables

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

A Symmetric w.r.t. principle axis
B antisymmetric w.r.t. principle axis
subscript 1 is for representations that are symmetric w.r.t. a C_{2} that is perpendicular to the principle axis
subscript 2 is for representations that are antisymmetric w.r.t. a C_{2} that is perpendicular to the principle axis
in the absence of a C_{2} a vertical mirror plane perpendicular to the plane of the molecule is used instead
subscript g symmetric w.r.t. inversion
subscript u antisymmetric w.r.t. inversion
' symmetric w.r.t. σ_{h}
" antisymmetric w.r.t. O_{h}

