Today (2)

- 2.1 Historical Development of Atomic Theory
- 2.1.1 The Periodic Table
- 2.1.2 Discovery of Subatomic Particles and The Bohr Atom

Next Class (3)

2.2 The Schrödinger Equation

2.2.1: The Particle in a Box

2.2.2 Quantum Numbers and Atomic Wave Functions

2.2.3 The Aufbau Principle and Shielding

Second Class from Today (4)

2.2.2 Quantum Numbers and Atomic Wave Functions

2.2.3 The Aufbau Principle and Shielding

2.3 Periodic Properties

Third Class from Today (5)

2.3 Periodic Properties

Daltons Atomic Theory

combine to make Section 2.1 combine to decodes + molecodes + compound the same compound the same to produce

Dalton's Theory

- 1. All matter is composed of atoms.
- 2. All atoms of a given element are alike and all atoms of a given element are different than the atoms of another element.
- 3. Compounds are formed when atoms combine in fixed proportions.
- 4. A chemical reaction involves the rearrangement of atoms. No \checkmark atoms are broken apart or destroyed in a chemical reaction.

"...the ultimate particles of all homogeneous bodies are perfectly alike in weight, figure, etc. In other words, every particle of water is like every other particle of water [...]"¹

"[...] most probable [...] that there are the same number of particles in two measure of hydrogen as in one measure of oxygen" 2

¹ As quoted in *Inorganic Chemistry* 5th Edition, Miessler, Fischer, and Tarr, Pearson (2014), p 9. referencing page 113 of John Daltons A New System of Chemical Philosophy, 1808 reprinted with an Introduction by Alexander Joseph, Perter Owen Limited, London, 1965.

² Ibid. referencing page 133 of John Daltons *A New System of Chemical Philosophy*, 1808 reprinted with an Introduction by Alexander Joseph, Perter Owen Limited, London, 1965.

"A chemical element is a chemical substance that cannot be broken down into other substances."1

Dalton's Symbols for the Elements³

chlorine	35,470 ²	calcium (Kalk/lime)	356,019	sulfur	32,239
bromine	78,383 ² (80,470)	strontium (Strontianerde/ Strontian earth)	647,285	selenium	79,263 (80,741)
iodine	126.479 ²	barium (Baryterde/barite earth)	956,880	tellurium	129,243

Döberiner's Triads²

¹ <u>https://en.wikipedia.org/wiki/Chemical_element</u> accessed September 7, 2023

² Annalen der Physik. ser.2 v.15 (1829) pp. 301-307 via https://babel.hathitrust.org/cgi/pt?id=mdp.39015065410634&view=1up&seq=317&skin=2021

³ <u>https://en.wikipedia.org/wiki/History of the periodic table#/media/File:Dalton's symbols of the elements. 1806 Wellcome M0004592.jpg which references https://wellcomeimages.org/indexplus/obf_images/0f/17/3e7d575111fcdad60b4fe0e9a466.jpg</u>

The Periodic Table

Reiben	Grappo I. — R*0	Grappo II. RO	Gruppo III. R ¹ 0 ³	Gruppe IV. RH4 RO3	Groppe V. RH ² R ² 0 ⁵	Grappo VI. RHª RO'	Gruppe VII. RH R*0'	Groppo VIII. RO
1	II=1							
2	Li=7	Bo=9,4	B==11	C=12	N=14	O == 16	F=19	
3	Na=28	Mg==24	Al=27,3	Si=28	P=31	8=32	Cl== 35,5	
4	K=39	Ca= 40	-==44	Ti= 48	V===51	Cr= 52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.
5	(Cu=63)	Zn==65	-=68	-=72	As=75	So=78	Br== 80	
6	Rb == 86	Sr=87	?Yt=88	Zr == 90	Nb == 94	Mo=96	-==100	Ru=104, Rh=104, Pd=106, Ag=108.
7	(Ag≈108)	Cd=112	In==113	Sn==118	Sb=122	Te=125	J=127	
8	Ca== 183	Ba=187	?Di=138	?Co==140	-	-	-	
9	()	- 1	- 1	_	-	-	-	
10	-	-	?Er=178	?La=180	Ta=182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.
11	(Au=199)	flg=200	Ti== 204	Pb=207	Bi== 208	-	-	
12	-	-	-	Th=231	-	U==240	-	

https://en.wikipedia.org/wiki/History of the periodic table#/media/File:Mendelejevs periodiska system 1871.png https://en.wikipedia.org/wiki/Periodic_table

Periodic Table

Mendeleev (1871)

serie S	Group I R ₂ O	Group II RO	Group III R ₂ O ₃	Group IV RH4 RO2	Group V RH ₃ R ₂ O ₅	Group VI RH2 무O3	Group VII RH R2O7	Group VIII RO₄	
1	H = 1								
2	Li = 7	Be = 9,4	B = 11	C = 12	N = 14	0 = 16	F = 19		
3	Na = 23	Mg = 24	Al = 27,3	Si = 28	P = 31	S = 32	Cl = 35,5		
4	K = 39	Ca = 40	- = 44	Ti = 48	V = 51	Cr = 52	Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63	
5	(Cu = 63)	Zn = 65	- = 68	-= 72	As = 75	Se =78	Br = 80		
6	Rb = 85	Sr = 87	? <u>Yt</u> = 88	Zr = 90	Nb = 94	Mo = 96	— = 100	Ru = 104, Rh = 104, Pd = 106, Ag = 108	
7	(Ag = 108)	Cd = 112	ln = 113	Sn = 118	Sb =122	Te = 125	l = 127		
8	Cs = 133	Ba = 137	?Di = 138	?Ce = 140	-	-	_		
9	(-)	-	-	-	-	-	-		
10	-	-	?Er = 178	?La = 180	Ta = 182	W = 184	-	Os = 195, <u>lr</u> = 197, Pt = 198, Au =199	
11	(Au = 199)	Hg = 200	TI = 204	Pb = 207	Bi = 208	-	-		
12	-	-	-	Th = 231	-	U = 240	_		

predicted density of Oxide t chloride compands of these elements

Periodic Table of the Elements

https://en.wikipedia.org/wiki/Periodic_table

2.1.1

Section 2.1.2

Cathode Ray Tubes (JJ Thomson)

Section 2.112 Cathode Ray Tubes (JJ Thomson) relectrocles phosphoresient scrier Æ evacuat Juke porticles were charged screen lights up all electrodes produced particles with the same propurties when particles mass to charge ratio the amount that the path of the particles change depends on relacity, stringth of electric field, https://en.wikipedia.org/wiki/J. ohical Magazine, 44, 293 (1897) of object + charge object Mass

Oil Drop Experiments (RA Millikan)

1.

Section 2.1.2

found the charge of the e

1. https://en.wikipedia.org/wiki/Oil_drop_experiment#/media/File:Millikan's_oil-drop_apparatus_1.jpg

2. https://en.wikipedia.org/wiki/Oil_drop_experiment#/media/File:Scheme_of_Millikan's_oil-drop_apparatus.jpg

Gold Foil Experiment (E Rutherford)

Section 2.1.2

plum pudding

uniform density

model ...

positive things (canal rays) (cathode ray tubes) regative things they where are atom gold foil experiments

"[... wer a fu scir

12

X-Ray Spectroscopy (H.G.J Moseley)

"Moseley found that the K_{α} lines (in Siegbahn notation) were indeed related to the atomic number, Z.

Following Bohr's lead, Moseley found that for the spectral lines, this relationship could be approximated by a simple formula, later called Moseley's Law.

1 ycleu<

"Until Moseley's work, "atomic number" was merely an element's place in the periodic table and was not known to be associated with any measurable physical quantity."

https://en.w

Hydrogen Line Spectra (Lyman, Balmer, Paschen and others)

https://en.wikipedia.org/wiki/Emission_spectrum1

Section 2.1.2

Section 2.2

Are there other phenomena that have quantized energy levels?

Standing waves!