Today (3)
2.2 The Schrödinger Equation
2.2.1: The Particle in a Box
2.2.2 Quantum Numbers and Atomic Wave Functions
2.2.3 The Aufbau Principle and Shielding

Second Class from Today (5)

2.2.2 Quantum Numbers and Atomic Wave Functions
2.2.3 The Aufbau Principle and Shielding
2.3 Periodic Properties
2.2.2 Quantum Numbers and Atomic Wave Functions
2.2.3 The Aufbau Principle and Shielding
2.3 Periodic Properties

Third Class from Today (6)
3.1 Lewis Structures
3.2 VSEPR

Wave-Particle Duality

the wavelength of o particle
de Broglie

$$
\lambda=h / \mathrm{mv}
$$

Heisenberg

$$
\begin{aligned}
& \text { with mass in t } \\
& \text { velocity v } \\
& \Delta x \Delta p_{x} \geq h / 4 \pi
\end{aligned}
$$

ex -

objects like people
λ is very small
small eurgetce objects have a langer wavelength
https://en.wikipedia.org/wiki/Electron_diffraction\#/media/File:DifraccionElectronesMET.jpg
when the blamiltonian operator op
Squaring the wave function gives use the probability of finding a the electron at a given location in space the wave function comes back out + it is multiplied by the $\begin{aligned} & \text { The wave function must be an eigenfunction energy of the system } \\ & \text { English }\end{aligned}$

Math-speak	English		
1. The wave function must be single valued.	Cannot have two probabilities for finding the electron at a given point		
2. The wave function and its first derivatives must be continuous.	The probability must be defined at all points in space and cannot change abruptly		
3. The wave function must approach 0 as r			
approaches infinity		\quad	The probability must get smaller at large
:---			
distances of the atom. The atom must be			
finite.			

as distance approaches infinity $\varphi \neq \varphi$ approsechs

Schödinger Equation and the Hamiltonian Operator

$$
\begin{aligned}
& \text { tion and the Hamiltonian Operator } \\
& \mathrm{H}=\frac{-h^{2}}{8 \pi^{2} \mathrm{~m}}\left(\frac{\delta^{2}}{\delta \mathrm{x}^{2}}+\frac{\delta^{2}}{\delta \mathrm{y}^{2}}+\frac{\delta^{2}}{\delta \mathrm{z}^{2}}\right)-\frac{\mathrm{Z} e^{2}}{4 \pi \varepsilon_{0} \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}} \psi
\end{aligned}
$$

Since,

$$
\begin{aligned}
E & =K E+P E \\
& =\frac{1}{2} m v^{2}+\frac{z q 9}{5} k \\
& \frac{m^{2}}{s^{2}}
\end{aligned}
$$

$$
\frac{\left(\text { charge } e^{-}\right) \cdot(\text { nuclear charge })}{\text { constants }}
$$

$$
\begin{aligned}
& \text { KEy } r=\sqrt{x^{2}+y^{2}+z^{2}} \\
& H=\left[\frac{-h^{2}}{8 \pi^{2} m}\left(\frac{\delta^{2}}{\delta x^{2}}+\frac{\delta^{2}}{\delta y^{2}}+\frac{\delta^{2}}{\delta z^{2}}\right)\right]
\end{aligned}
$$

So the electron is a particle/wave trapped in an atom...
model any wave

my particle in the wall? 0 so wave function at $x=0$ must be 0

So the electron is a particle/wave trapped in an atom...

$$
\Psi=\mathbf{A} \sin \mathbf{r x}
$$

simplified because our particle 15 not charged, so no contribution to E from Couloonbs law.

$$
\begin{aligned}
& \frac{-h^{2}}{8 \pi^{2} m}\left(\frac{\delta^{2}}{\delta x^{2}}(A \sin r x)\right)=E(A \sin r x) \\
& \frac{-h^{2}}{8 \pi^{2} m}(\operatorname{Ar})\left(\frac{\delta}{\delta x}(\cos r x)\right)=E(A \sin r x) \\
& \frac{-h^{2}}{8 \pi^{2} m}\left(-A r^{2}\right)(\sin r x)=E A \sin r x
\end{aligned}
$$

So the electron is a particle/wave trapped in an atom...

$$
\begin{aligned}
& \frac{-h^{2}}{8 \pi^{2} m}\left(-A r^{2}\right)(\sin r x)=E \text { A } \sin r x \\
& \frac{-h^{2}}{8 \pi^{2} m}\left(-r^{2}\right)=E \\
& r^{2}=E \quad \frac{8 \pi^{2} m}{h^{2}} \\
& r=\frac{2 \pi}{h} \sqrt{2 m E}
\end{aligned}
$$

So the electron is a particle/wave trapped in an atom...

$$
\mathrm{r}=\frac{2 \pi}{h} \sqrt{2 \mathrm{mE}}
$$

must he 0 .
The particle canst exit in the can wall.
the energy is quantized
because she fare function nab many tn's where the function goes to 0.

$$
\begin{aligned}
\Psi & =\mathrm{A} \sin \mathrm{rx} \\
\mathrm{r} & =n \frac{\pi}{a} \\
\Psi & =\mathrm{A} \sin \left(n \frac{\pi}{a} \mathbf{x}\right)
\end{aligned}
$$

So the electron is a particle/wave trapped in an atom...

$$
\begin{gathered}
\Psi=A \sin \left(n \frac{\pi}{a} x\right) \\
\left(\Psi \Psi^{*}\right)=1 \\
\Psi=(2 / a) 1 / 2 \sin (n \pi / a) x
\end{gathered}
$$

Equations

https://www.westfield.ma.edu/cmasi/advinorg/angular distribution functions/
text and graphics containe.htm

Pictures
https://www.westfield.ma.edu/cmasi/advinorg/quant_orbital_surfaces/orbital_surfaces.htm

Models
s and p
https://www.westfield.ma.edu/cmasi/organic/mo-plain/aos.html
d orbitals
https://www.westfield.ma.edu/cmasi/advinorg/dorbs/dorbsp.html

Orbitals (n, I, and m_{I})

One quantum number wasn't enough to model the electrons in an atom n is the principal quantum number

$$
n=1,2,3,4,5
$$

(quantum mechanics Bohr's shells
l is the Angular momentum quantum number l shells are sub shells inside an A shell
m_{l} is the magnetic quantum number describes the shape of the orbitals in the l sub shells

- experimental observation
m_{s} is the spin quantum number e^{-1} s can align with or against a magnetic field e^{-1} shave 2 spin states | spin up or spin down $\left\lvert\, m_{s}=\frac{1}{2}\right.$ or $-\frac{1}{2}$
for a given n allowed values for l are $n-1$ down to 0

$$
n=1 \quad l=0 \quad \quad \quad n=2 \quad l=1,0
$$

For a given l allowed values for m_{l} are $+l$ to $l l$ in whole $\#$ steps

$$
\begin{array}{cccc}
n=1 & l=0 & m_{l}=0 & n=2 \\
l & \rho & l=1 \quad n l=1,0,-1 \quad l=0, m_{l}=0 \\
& p \text { type orbital } \quad \text { three } 2 p \text { orbitals one } 2 S
\end{array}
$$

Periodic Table of the Elements

	1	2															3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
(1)	1 H																															2 He
(2)	$\begin{gathered} 3 \\ \mathrm{Li} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 4 \\ \mathrm{Be} \\ \hline \end{array}$																									$\begin{array}{\|l\|} \hline 5 \\ B \end{array}$	$\begin{aligned} & 6 \\ & \mathbf{C} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 7 \\ \mathrm{~N} \end{array}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & \mathbf{F} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \hline 10 \\ \mathrm{Ne} \\ \hline \end{array}$
(3)	$\begin{array}{\|l\|} \hline 11 \\ \mathrm{Na} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12 \\ \mathrm{Mg} \\ \hline \end{array}$																									$\begin{array}{\|l\|} \hline 13 \\ \text { AI } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 14 \\ \mathrm{Si} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 15 \\ \mathbf{P} \end{array}$	$\begin{gathered} \hline 16 \\ \mathrm{~S} \end{gathered}$	$\begin{array}{\|l\|} \hline 17 \\ \mathrm{Cl} \\ \hline \end{array}$	18 Ar
(4)	$\begin{array}{\|l\|} \hline \hline 19 \\ \mathbf{K} \end{array}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & \hline \end{aligned}$															$\begin{array}{\|l\|} \hline 21 \\ \mathrm{Sc} \\ \hline \end{array}$	$\begin{aligned} & 22 \\ & \mathrm{Ti} \end{aligned}$	$\begin{aligned} & 23 \\ & \mathbf{v} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$	$\begin{array}{\|l\|} \hline 25 \\ \mathbf{M n} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 26 \\ \mathrm{Fe} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 27 \\ \text { Co } \end{array}$	$\begin{aligned} & 28 \\ & \mathrm{Ni} \end{aligned}$	$\begin{array}{\|l} \hline 29 \\ \mathrm{Cu} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ \mathbf{Z n} \end{array}$	$\begin{aligned} & 31 \\ & \mathbf{G a} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 32 \\ & \mathbf{G e} \end{aligned}$	$\begin{aligned} & \hline 33 \\ & \hline \text { As } \end{aligned}$	$\begin{aligned} & 34 \\ & \mathrm{Se} \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \end{aligned}$	$\begin{aligned} & \hline 36 \\ & \mathbf{K r} \end{aligned}$
(5)	$\begin{aligned} & \hline 37 \\ & \mathbf{R b} \end{aligned}$	$\begin{array}{\|l\|} \hline 38 \\ \mathrm{Sr} \end{array}$															$\begin{array}{\|c\|} \hline 39 \\ \mathbf{Y} \end{array}$	$\begin{aligned} & \hline \hline 40 \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$	$\begin{array}{\|l\|} \hline 42 \\ \mathrm{Mo} \end{array}$	$\begin{aligned} & \hline \hline 43 \\ & \mathrm{Tc} \end{aligned}$	$\begin{array}{\|c\|} \hline 44 \\ \mathrm{Ru} \end{array}$	$\begin{aligned} & \hline \hline \mathbf{4 5} \\ & \mathbf{R h} \end{aligned}$	$\begin{array}{\|l\|} \hline 46 \\ \text { Pd } \end{array}$	$\begin{array}{\|l\|} \hline 47 \\ \mathrm{Ag} \end{array}$	$\begin{aligned} & 48 \\ & \mathbf{C d} \end{aligned}$	$\begin{aligned} & \hline 49 \\ & \text { In } \end{aligned}$	$\begin{aligned} & \hline 50 \\ & \mathbf{S n} \end{aligned}$	$\begin{aligned} & \hline \hline 51 \\ & \text { Sb } \end{aligned}$	$\begin{aligned} & \hline \hline \frac{52}{\mathrm{Te}} \end{aligned}$	$\begin{array}{\|c} \hline 53 \\ 1 \end{array}$	$\begin{array}{\|l\|} \hline \hline 54 \\ \mathrm{Xe} \end{array}$
(6)	$\begin{aligned} & \hline 55 \\ & \text { Cs } \end{aligned}$	$\begin{aligned} & 56 \\ & \mathrm{Ba} \end{aligned}$	$\begin{aligned} & 57 \\ & \text { La } \end{aligned}$	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\begin{gathered} 60 \\ \mathbf{N d} \end{gathered}$	$\begin{array}{\|c\|} \hline 61 \\ \text { Pm } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 62 \\ \mathrm{Sm} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 63 \\ \mathrm{Eu} \\ \hline \end{array}$	$\begin{aligned} & 64 \\ & \mathbf{G d} \\ & \hline \end{aligned}$	$\begin{aligned} & 65 \\ & \mathrm{~Tb} \end{aligned}$		$\begin{array}{\|l} \hline 67 \\ \mathrm{Ho} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 68 \\ \mathrm{Er} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 69 \\ \mathrm{Tm} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 70 \\ \mathbf{Y b} \end{array}$	$\begin{aligned} & 71 \\ & \mathrm{Lu} \end{aligned}$	$\begin{aligned} & \hline 72 \\ & \mathbf{H f} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 73 \\ & \mathrm{Ta} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 74 \\ & \mathbf{W} \end{aligned}$	$\begin{array}{\|l\|} \hline 75 \\ \mathrm{Re} \end{array}$	$\begin{aligned} & 76 \\ & \mathrm{Os} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 77 \\ & \mathrm{Ir} \end{aligned}$	$\begin{aligned} & \hline \hline 78 \\ & \mathrm{Pt} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 79 \\ \mathrm{Au} \end{array}$	$\begin{array}{\|l} \hline 80 \\ \mathrm{Hg} \end{array}$	$\begin{aligned} & \hline 81 \\ & \mathrm{TI} \end{aligned}$	$\begin{array}{\|l\|} \hline 82 \\ \mathrm{~Pb} \\ \hline \end{array}$	$\begin{aligned} & \hline 83 \\ & \mathrm{Bi} \end{aligned}$	$\begin{aligned} & \hline 84 \\ & \mathrm{Po} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 85 \\ \mathrm{At} \end{array}$	$\begin{array}{\|l} \hline 86 \\ \mathbf{R n} \\ \hline \end{array}$
(7)	$\begin{array}{\|l\|} \hline 87 \\ \mathrm{Fr} \end{array}$	$\begin{array}{\|l\|} \hline 88 \\ \mathrm{Ra} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 89 \\ \mathbf{A c} \end{array}$	$\begin{aligned} & \hline 90 \\ & \hline \text { Th } \end{aligned}$	$\begin{aligned} & 91 \\ & \mathrm{~Pa} \end{aligned}$	$\begin{aligned} & 92 \\ & \mathbf{U} \end{aligned}$	$\begin{aligned} & 93 \\ & \mathrm{~Np} \end{aligned}$	$\begin{gathered} 94 \\ \hline \mathrm{Pu} \end{gathered}$	$\begin{gathered} 95 \\ \text { Am } \end{gathered}$	$\begin{aligned} & \hline 96 \\ & \mathrm{Cm} \end{aligned}$			$\begin{gathered} 99 \\ \hline \hline \text { Es } \end{gathered}$	$\begin{aligned} & \hline 100 \\ & \mathrm{Fm} \end{aligned}$	$\begin{array}{\|l\|} \hline 101 \\ \mathrm{Md} \end{array}$	$\begin{array}{\|l} \hline 102 \\ \text { No } \end{array}$	$\begin{gathered} 103 \\ \mathrm{Lr} \end{gathered}$	$\begin{array}{\|c\|} 104 \\ \mathbf{R f} \end{array}$		106 $\mathbf{S g}$	107 Bh	$\begin{array}{\|c} 108 \\ \mathrm{Hs} \end{array}$	$\begin{aligned} & 109 \\ & \mathrm{Mt} \end{aligned}$	110 Ds	111 Rg	$\begin{aligned} & 112 \\ & \mathbf{C n} \end{aligned}$	$\begin{aligned} & \hline 113 \\ & \mathrm{Nh} \end{aligned}$	$\begin{gathered} \hline 114 \\ \mathrm{FI} \end{gathered}$	$\begin{aligned} & \hline 115 \\ & \text { Mc } \end{aligned}$	116	$\begin{array}{\|c} \hline 117 \\ \text { Ts } \end{array}$	

The Aufbau Principle

1. start in lowest quantum levels
2. Pauli exclusion principle---comes from experiment, not the Schrödinger Equation
3. Hund's Rule of Multiplicity--Multiplicity is the number of unpaired e-s +1

Factors determining the energy of the electron
Penetration and effective nuclear charge
$\Pi_{\mathrm{c}}=$ coulomb repulsion
-bad
-number of paired electrons

The Aufbau Principle

1. start in lowest quantum levels
2. Pauli exclusion principle---comes from experiment, not the Schrödinger Equation
3. Hund's Rule of Multiplicity--Multiplicity is the number of unpaired $e^{--} \mathrm{s}+1$

Penetration/effective nuclear charge
$\Pi_{\mathrm{c}}=$ coulomb repulsion

- bad
- number of paired electrons
$\Pi_{\mathrm{e}}=$ exchange energy
- good in the case of parallel electrons in an atom
- number of exchanges that can be made and produce identical electron configurations

Exchange energy is NOT the exchanges between all possible arrangements (states). Rather, it is the number of possible exhanges of electrons in a single state; thus,

