This Class
4.3 Properties and
4.4 Examples

Representations of Groups
4.2

Using A Decision Making Tree
Section 4.2

Using the Tree
BF_{3}

σ_{h} is a mirror plane 1 to principle axis
Principle axis is C_{n} with highest n
σ_{v} mirror plane than contains princrpléa

o mirror plane flan contain principle axis

Practice

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{H}_{2} \mathrm{O}$
PCl_{3}	BrF_{5}
HCN	PPh_{3}
$\mathrm{PtCl}_{4}{ }^{2-}$	(square planar)

Fc
$\mathrm{C}_{2} \mathrm{H}_{2}$

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{2 \mathrm{v}}$	Fc	$\mathrm{D}_{5 \mathrm{~d}}$
PCl_{3}	$\mathrm{C}_{3 \mathrm{v}}$	BrF_{5}	$\mathrm{C}_{4 \mathrm{v}}$
HCN	$\mathrm{C}_{\infty \mathrm{v}}$	PPh_{3}	C_{3}
$\mathrm{PtCl}_{4}{ }^{2-}$	$\mathrm{D}_{4 \mathrm{~h}}$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{2 \mathrm{v}}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	$\mathrm{D}_{\infty \mathrm{h}}$		

In mathematics, a group is a set combined with an operation that has the following properties
the operation combines any two elements of the set to form a third element which is part of the original set
other ways of saying this:
a set must be closed under the operation
 there must be closure with respect to the operation

$$
4+0=4
$$

operating on elements of the set must satisfy the associative property

$$
4+-4=0
$$

the operation in the set must be invertible (undoable) the set must contain elements such that the operation on two elements in the set produce the identity element

$$
\begin{aligned}
& 4 \cdot 1=4 \\
& 4 \cdot \frac{1}{4}=1
\end{aligned}
$$

What is a Point Group?
$\mathrm{C}_{2 \mathrm{v}}$

E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$

This is

Character Tables

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz
these are the characters						
then						

this is an irreducible representation

