This Class

- 2.1 Historical Development of Atomic Theory
- 2.1.1 The Periodic Table
- 2.1.2 Discovery of Subatomic Particles and The Bohr Atom

2.2 The Scrödinger Equation

Next Class

The Particle in a Box, Quantum Numbers, The Aufbau Principle and Shielding

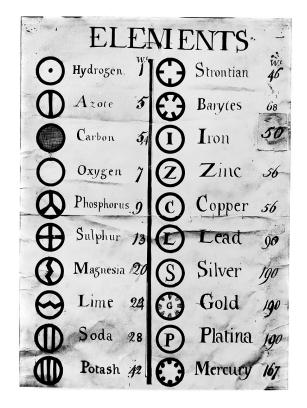
2.3 Periodic Properties

Daltons Atomic Theory

Mass # neutrons + # protons

Section 2.1

10
6
13
6
6
6


Dalton's Theory

- 1. All matter is composed of atoms.
- 2. All atoms of a given element are alike and all atoms of a given element are different than the atoms of another element.
- 3. Compounds are formed when atoms combine in fixed proportions.
- 4. A chemical reaction involves the rearrangement of atoms. No atoms are broken apart or destroyed in a chemical reaction.

"...the ultimate particles of all homogeneous bodies are perfectly alike in weight, figure, etc. In other words, every particle of water is like every other particle of water [...]" 1

"[...] most probable [...] that there are the same number of particles in two measure of hydrogen as in one measure of oxygen"

¹ As quoted in *Inorganic Chemistry* 5th Edition, Miessler, Fischer, and Tarr, Pearson (2014) referencing John Daltons *A New System of Chemical Philosophy*, 1808 repointed with an Introduction by Alexander Joseph, Perter Owen Limited, London, 1965.

Döberiner's Triads

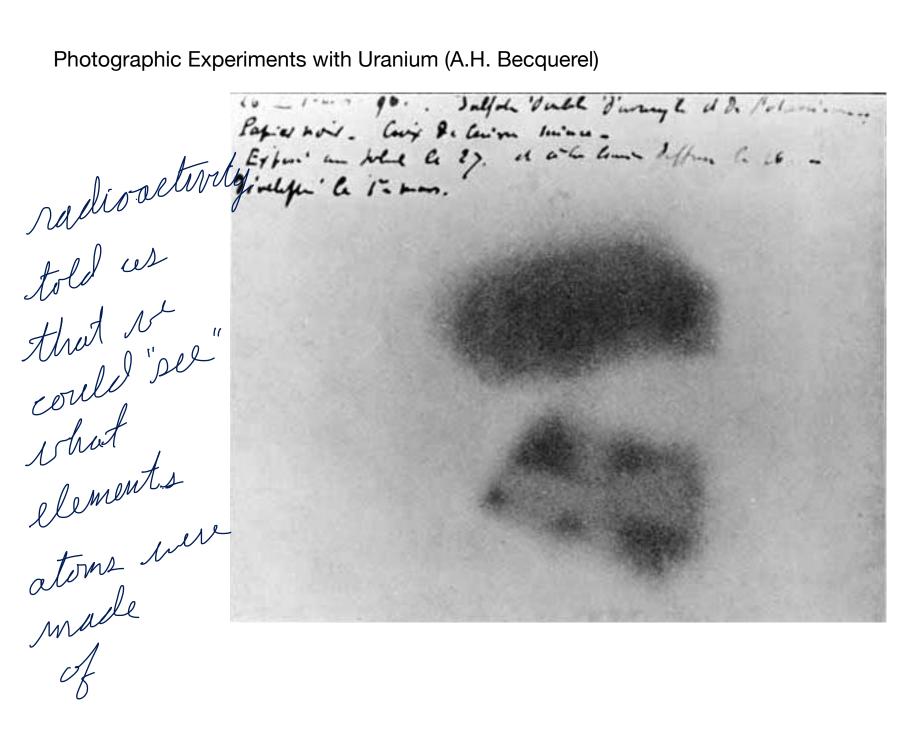
chlorine	35,470	calcium (Kalk/lime)	356,019	sulfur	32	lithium
bromine	78,383 (80,470)	strontium (Strontianerde/ Strontian earth)	647,285	selenium	7 9, 2 6 3 (8 0, 7 4 1)	sodium (Natron/ baking soda)
iodine	126.479	barium (Baryterde/barite earth)	956,880	tellurium	129	potasium

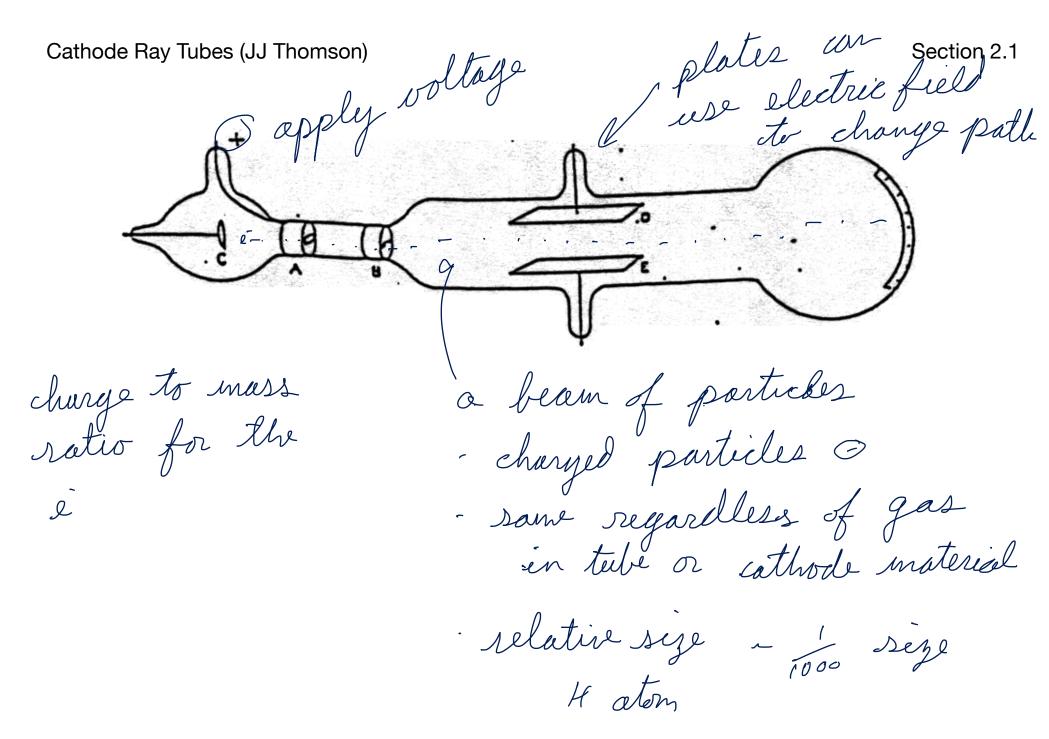
https://babel.hathitrust.org/cgi/pt?id=mdp.39015065410634&view=1up&seq=317&skin=2021

¹ https://en.wikipedia.org/wiki/History of the periodic table#/media/File:Dalton's symbols of the elements. 1806 Wellcome M0004592.jpg which references https://wellcomeimages.org/indexplus/obf_images/0f/17/3e7d575111fcdad60b4fe0e9a466.jpg

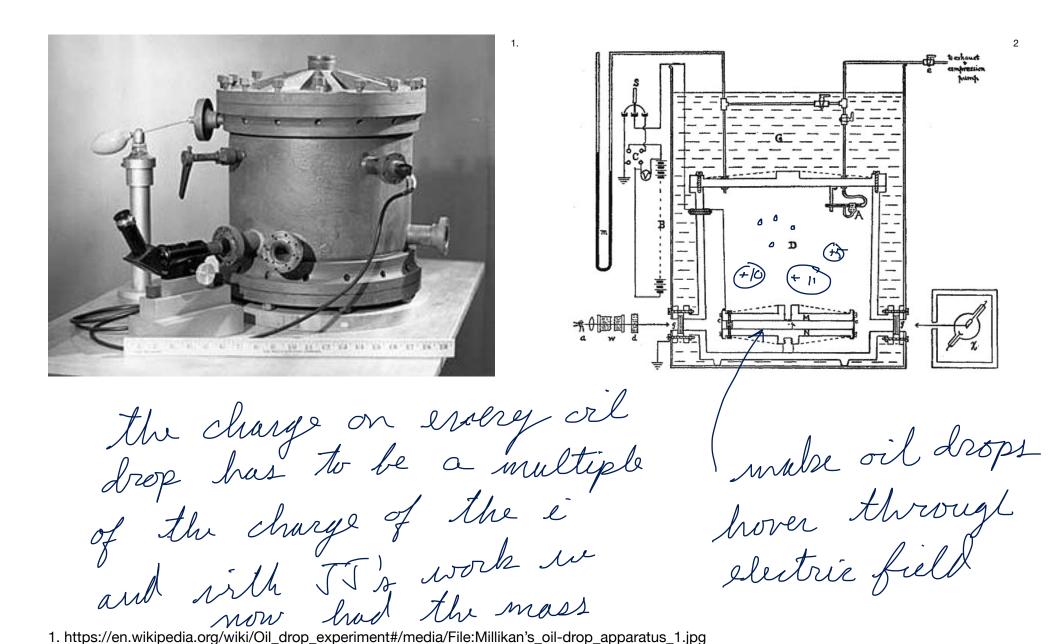
The Periodic Table Section 2.1

Reiben	Gruppo I. — R [†] 0	Gruppo II. R0	Gruppo III, R ¹ 0 ³	Gruppe IV. RH ⁴ RO ²	Groppe V. RH ² R ² 0 ⁵	Grappo VI. RH ² RO ²	Gruppe VII. RH R*0'	Gruppo VIII.
1	II=1							
2	Li=7	Be=9,4	B=11	C=12	N=14	O=16	F=19	
8	Na=23	Mg == 24	Al=27,8	Si=28	P=31	8=32	Cl=35,5	
4	K=39	Ca== 40	-=44	Ti== 48	V=51	Cr=52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.
5	(Cu=63)	Zn == 65	-=68	-=72	As=75	So=78	Br=80	
6	Rb == 86	Sr=87	?Yt=88	Zr= 90	Nb == 94	Mo≔96	-=100	Ru=104, Rh=104, Pd=106, Ag=108.
7	(Ag≈108)	Cd=112	In == 113	Sn==118	Sb=122	Te=125	J== 127	
8	Ca == 133	Ba=137	?Di=138	?Co=140	_	_	_	
9	()	1 –	-	l –	_	_	_	
10	-	-	?Er=178	?La=180	Ta=182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.
11	(Au=199)	Hg=200	T1== 204	Pb==207	Bi==208	-	-	
12	-	-	-	Th=231	-	U==240	_	


Periodic Table


Mendeleev	(1871)

				Mende	eleev (187	//	predic	
serie s	Group I R₂O	Group II RO	Group III R₂O₃	Group IV RH ₄ RO ₂	Group V RH ₃ R ₂ O ₅	Group VI RH ₂ RO ₃	Group VII RH R ₂ O ₇	Group VIII RO ₄
1	H = 1							
2	Li = 7	Be = 9,4	B = 11	C = 12	N = 14	O = 16	F = 19	
3	Na = 23	Mg = 24	Al = 27,3	Si = 28	P = 31	S = 32	CI = 35,5	
4	K = 39	Ca = 40	(- = 44)	Ti = 48	V = 51	Cr = 52	Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63
5	(Cu = 63)	Zn = 65	- = 68	= 72	As = 75	Se =78	Br = 80	
6	Rb = 85	Sr = 87	?Yt = 88	Zr = 90	Nb = 94	Mo = 96	= 100	Ru = 104, Rh = 104, Pd = 106, Ag = 108
7	(Ag = 108)	Cd = 112	In = 113	Sn = 118	Sb =122	Te = 125	I = 127	
8	Cs = 133	Ba = 137	?Di = 138	?Ce = 140	_	_	_	
9	(-)	_	_	_	_	_	_	
10	_	_	?Er = 178	?La = 180	Ta = 182	W = 184	_	Os = 195, <u>Ir</u> = 197, Pt = 198, Au =199
11	(Au = 199)	Hg = 200	TI = 204	Pb = 207	Bi = 208	_	_	
12	_	_	_	Th = 231	_	U = 240	_	
			Period	dic Table	of the E	Elements		10 11 12 13 14


Pario	oibo	Table	a of t	the F	laman	te

	1	2														3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 H																														2 He	
0	3 Li	4 Be																								5 B	6 C	7 N	8	9 F	10 Ne	
3	11 Na	12 Mg																								13 AI	14 Si	15 P	16 S	17 CI	18 Ar	
4	19 K	20 Ca														21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu		31 Ga	32 Ge	33 As	I _ II	35 Br	36 Kr	
(5)	37 Rb	38 Sr														39 Y	40 Zr	41 Nb	42 Mo		44 Ru		46 Pd		48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe	
6	55 Cs	56 Ba	57 La	58 Ce	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	I — I	67 Ho	68 Er	69 Tm	70 Yb	II I	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au		81 TI	82 Pb	83 Bi	84 Po	85 At		
0	87 Fr	88 Ra	89 Ac	90 Th	92 U		94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg				115 Mc		117 Ts		

determine the charge of an e Oil Drop Experiments (RA Millikan)

^{1.} https://en.wikipedia.org/wiki/Oil drop experiment#/media/File:Millikan's oil-drop apparatus 1.jpg

^{2.} https://en.wikipedia.org/wiki/Oil_drop_experiment#/media/File:Scheme_of_Millikan's_oil-drop_apparatus.jpg

"[...] metal foil (F). The microscope (M) and screen (S) were affixed to a rotating cylinder and could be moved a full circle around the foil so that they could count scintillations from every angle."

He wort would go straight through, some would be deflected, and a few would be bounced be bounced back toward the source.

https://en.wikipedia.org/wiki/Geiger-Marsden_experiments#CITEREFGeigerMarsden1913

https://en.wikipedia.org/wiki/Geiger-Marsden_experiments#/media/File:Geiger-Marsden_diagram.gif

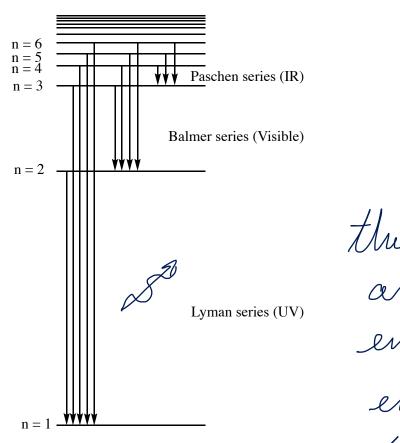
"Moseley found that the K_{α} lines (in Siegbahn notation) were indeed related to the atomic number, Z.

Following Bohr's lead, Moseley found that for the spectral lines, this relationship could be approximated by a simple formula, later called Moseley's Law.

$$v = A \cdot (Z-b)^2$$

"Until Moseley's work, "atomic number" was merely an element's place in the periodic table and was not known to be associated with any measurable physical quantity."

empericulty forend


v depended on atomin #

and hypothesize that was

the nuclear charge

https://en.wikipedia.org/wiki/Emission_spectrum1

$$E_{photon} = R_{H} \left(\frac{1}{4} - \frac{1}{n^{2}} \right)$$

$$E_{photon} = R_{H} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{h}^{2}} \right)$$

$$E_{\text{photon}} = R_{\text{H}} \left(\frac{1}{n_{\text{l}}^2} - \frac{1}{n_{\text{h}}^2} \right)$$

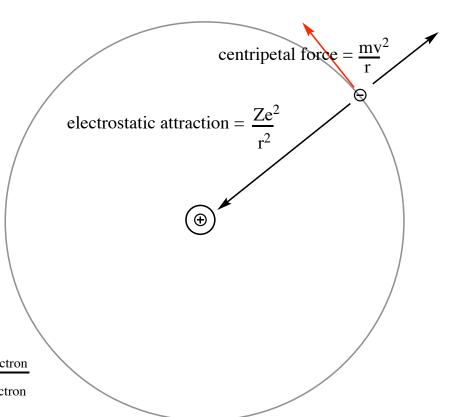
this is telling us that i'd are confined to specific energy levels...
energy of an i en an atom is quantized

Bohr Atom

Energy

$$E = KE + PE$$

$$E = \frac{1}{2} mv^2 + \frac{Ze^2}{r}$$


Angular Momentum is quantized

$$mvr = \mathbf{n} \; \frac{h}{2\pi}$$

algebra ...

$$E_{n} = \frac{\mu Z^{2}e^{4}}{\varepsilon_{0}^{2}h^{2}} \frac{1}{n^{2}}$$

where the reduced mass $\mu = \frac{m_{nucleus} + m_{electron}}{m_{nucleus}m_{electron}}$

