This Class Next Class

2.2 The Scrödinger Equation

The Particle in a Box, Quantum Numbers, The Aufbau Principle and Shielding

2.3 Periodic Properties

2.1.2 The Bohr Atom

2.2/The Scrödinger Equation

2.1.1 The Periodic Table

2.3 Periodic Trends

wavelength Wave-Particle Duality de Broglie $\lambda = h/mv$ matter has wave like properties Heisenberg $\Delta x \Delta p_x \ge h/4\pi$ $\Delta p_x \ge h/4\pi$ Bohr model treated the e as a particle. we can't tell where the e 15. uncertainty in position https://en/.wikipedia.org/wiki/Electron_diffraction#/media/File:DifraccionElectronesMET.jpg diffraction pattern produced by a beam of e's ... waves = 7 treat the

make diffraction patterns

Wave Mechanics and The Schrödinger Equation

on the wave function Section 2.2

 $H\Psi = E\Psi$ Energy

Squaring the wave function gives use the probability of finding a the electron at a given location in space

The wave function must be an eigenfunction

Math-speak	English
1. The wave function must be single valued.	Cannot have two probabilities for finding the
	electron at a given point
2. The wave function and its first derivatives	The probability must be defined at all points in
must be continuous.	space and cannot change abruptly
3. The wave function must approach 0 as r	The probability must get smaller at large
approaches infinity	distances of the atom. The atom must be finite.
4. Integrating $\Psi_A\Psi_A^*$ over all space must equal	The electron must be somewhere in space.
}	Process is called normalizing the wave function
5. Integrating $\Psi_A\Psi_B^*$ over all space must equal	The orbitals must be orthogonal (mutually
0	exclusive)

Hamiltonian is a nathmatical function we use to find the evergy of the e.

$$H = \frac{-h^2}{8\pi^2 m} \left(\frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2} \right) - \frac{Ze^2}{4\pi\epsilon_0 \sqrt{x^2 + y^2 + z^2}}$$

Since,

$$r = \sqrt{x^2 + y^2 + z^2}$$

$$H = \frac{-h^2}{8\pi^2 m} \left(\frac{\delta^2}{\delta x^2} + \frac{\delta^2}{\delta y^2} + \frac{\delta^2}{\delta z^2} \right) - \frac{ze^2}{4\pi\epsilon_0 r}$$

$$RE = \int_{\mathcal{F}} M \sqrt{r} dr$$

$$RE = \int_{\mathcal{F}} M \sqrt{r} dr$$

$$\vee$$
 • \vee

So the electron is a particle/wave trapped in an atom...

Section 2.2.1

 $\Psi = A \sin rx + B \cos sx$

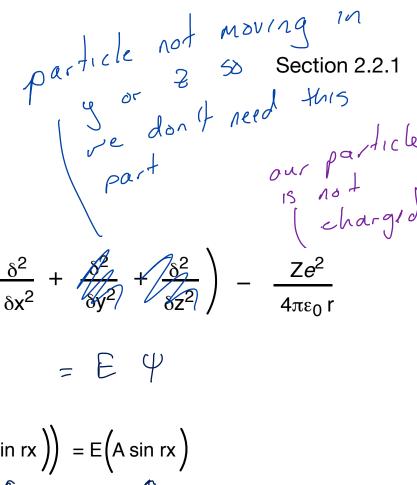
$$4 = 0 + B \quad \text{an} \quad 4_0 = 0$$

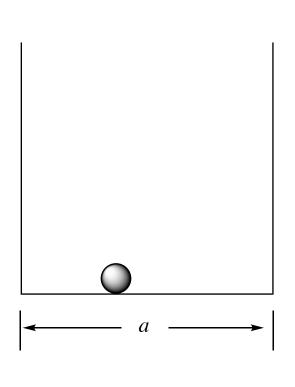
$$0 = 0 + B \quad \text{or} \quad B = 0$$

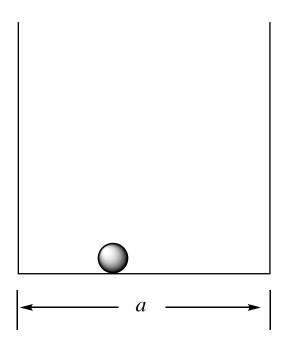
$$\Psi = \mathbf{A} \sin \mathbf{r} \mathbf{x}$$

Vave Functions come from mathematical experience

So the electron is a particle/wave trapped in an atom...



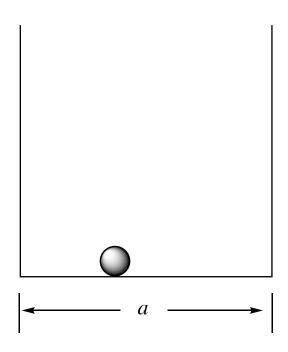




$$\frac{-h^2}{8\pi^2 m} \left(\frac{\delta^2}{\delta x^2} \left(A \sin rx \right) \right) = E \left(A \sin rx \right)$$

$$\frac{-h^2}{8\pi^2 m} (Ar) \left(\frac{\delta}{\delta x} \left(\cos rx \right) \right) = E \left(A \sin rx \right)$$

$$\frac{-h^2}{8\pi^2 m} \left(-Ar^2 \right) \left(\sin rx \right) = E A \sin rx$$



$$\frac{-h^2}{8\pi^2 m} (-Ar^2) (\sin rx) = E A \sin rx$$

$$\frac{-h^2}{8\pi^2 m} (-r^2) = E$$

$$r^2 = E \frac{8\pi^2 m}{h^2}$$

$$r = \frac{2\pi}{h} \sqrt{2mE}$$

$$\text{But remember} \quad \Psi = A \sin rx$$

$$\text{But remember} \quad \Psi = A \sin rx$$

$$\text{Total must}$$

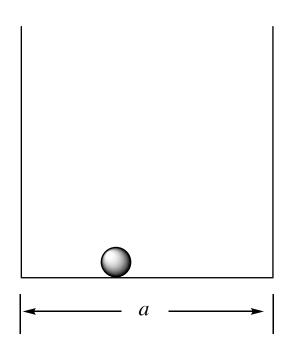
$$\text{So,}$$

$$\text{E} = \frac{n^2h^2}{(8a^2m)}$$

$$\text{Total must}$$

$$\text{T$$

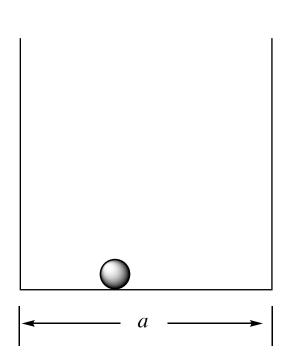
A sin $\left(n\frac{\pi}{\alpha}\cdot\alpha\right)=0$



$$\Psi = A \sin rx$$

$$r = n \frac{\pi}{a}$$

$$\Psi = \mathbf{A} \sin(n \frac{\pi}{a} \mathbf{x})$$



$$\Psi = \mathbf{A} \sin(n \frac{\pi}{a} \mathbf{x})$$

$$(\Psi\Psi^*) = 1$$

$$\Psi = (2/a)1/2 \sin (n\pi/a)x$$

The Aufbau Principle

Section 2.2.3

The Aufbau Principle

- 1. start in lowest quantum levels
- 2. Pauli exclusion principle---comes from experiment, not the Schrödinger Equation
- 3. Hund's Rule of Multiplicity--Multiplicity is the number of unpaired e-'s + 1

Penetration/effective nuclear charge

 Π_c = coulomb repulsion

- bad
- -number of paired electrons

 Π_e = exchange energy

-good in the case of parallel

electrons in an atom

-number of exchanges that can be made and produce identical electron configurations Exchange energy is **NOT** the exchanges between all possible arrangements (states). Rather, it is the number of possible exhanges of electrons in a single state; thus,

