This Class

Finish The Particle in a Box, Quantum Numbers, The Aufbau Principle and Shielding Next Class

1

Shielding and

2.3 Periodic Trends

So the electron is a particle/wave trapped in an atom...

Section 2.2.1

So the electron is a particle/wave trapped in an atom...

Section 2.2.1

Results -

Equations

https://www.westfield.ma.edu/cmasi/advinorg/angular_distribution_functions/ text_and_graphics_containe.htm

Pictures https://www.westfield.ma.edu/cmasi/advinorg/quant_orbital_surfaces/orbital_surfaces.htm

Models s and p https://www.westfield.ma.edu/cmasi/organic/mo-plain/aos.html

d orbitals https://www.westfield.ma.edu/cmasi/advinorg/dorbs/dorbsp.html

One quantum number wasn't enough to model the electrons in an atom n is the principal quantum number of tells as about the # of arbitals ovailable in a shell in can be 1,2,3,4,5.... higher is the Angular momentum quantum number *I* is the Angular momentum quantum number l can be N-1 down to O. The l # is the orbital type m_l is the magnetic quantum number Me # of orbitals of a given type A=1 l=0 me =0 15 $m_{l}=0$ + L ... - L | N=2 L=0 25 M2 = m_s is the spin quantum number $N=2 \quad l=1 \quad m_l=1$ $\ln N=2 \quad m_l=0$ Jрх $L = 2 M_{l} =$ 2py 2pz 3,2,1

Be
$$N=1$$
 $l=0$ $ml=0$ $m_s=+\frac{1}{2}$ e_1
 $n=1$ $l=0$ $ml=0$ $m_s=-\frac{1}{2}$ e_2
 $n=2$ $l=0$ $ml=0$ $m_s=\frac{1}{2}$ e_3
 $n=2$ $l=0$ $ml=0$ $m_s=-\frac{1}{2}$ e_4

ρ

1=0

The Aufbau Principle

- 1. start in lowest quantum levels
- 2. Pauli exclusion principle---comes from experiment, not the Schrödinger Equation
- 3. Hund's Rule of Multiplicity--Multiplicity is the number of unpaired $e^{-s} + 1$

Factors determining the energy of the electron

Penetration/effective nuclear charge

 Π_c = coulomb repulsion -bad -number of paired electrons

The Aufbau Principle

The Aufbau Principle

- 1. start in lowest quantum levels
- 2. Pauli exclusion principle---comes from experiment, not the Schrödinger Equation
- 3. Hund's Rule of Multiplicity--Multiplicity is the number of unpaired $e^{-s} + 1$

Factors determining the energy of the electron

Penetration/effective nuclear charge

- Π_c = coulomb repulsion
 - bad -number of paired electrons

Π_e = exchange energy

-good in the case of parallel electrons in an atom

-number of exchanges that can be made and produce identical electron configurations Exchange energy is **NOT** the exchanges between all possible arrangements (states). Rather, it is the number of possible exhanges of electrons in a single state; thus,

Periodic Table of the Elements

Wave Functions

 $http://www.westfield.ma.edu/cmasi/advinorg/angular_distribution_functions/text_and_graphics_containe.htm$

Section 2.1