Chap 5 List

Using the Ideal Gas Law to relate temperature to pressure, volume, or moles. For example, when volume is cut in half, what happens to pressure? (Pressure is doubled)

Using the ideal gas law to calculate temperature, pressure, volume, or moles when 3 out of 4 of the variables are given.

Determining the molar mass of an unknown gas using the Dumas method (lab).
Performing gas stoichiometry problems
with known amounts of materials (P, V and T supplied for all gases)
with P when V and T are held constant
with V when P and T are held constant

Dalton's Law

$\mathrm{P}_{\text {tot }}=\mathrm{P}_{\mathrm{a}}+\mathrm{P}_{\mathrm{b}}$
collecting gases over water
$\mathrm{P}_{\text {tot }}=\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}+\mathrm{P}_{\mathrm{gas}}$
Kinetic Molecular Theory
The relationship between KE and temperature, and the relationship between
velocity and temperature

$$
\mathrm{KE}_{\mathrm{ave}}=\frac{3 \mathrm{RT}}{2 N_{\mathrm{A}}} \quad 1 / 2 \mathrm{mv}^{2}=\frac{3 \mathrm{RT}}{2 N_{\mathrm{A}}}
$$

${ }^{*} v^{2}$ is actually the average of the squared velocities, not the square of the average velocity
On average, the kinetic energy (translational) of a gas particles depends only on its temperature. Thus, at a given temperature, small gas particles are moving faster than large gas particles.

Real Gases
Why aren't real gases ideal?
Under what conditions do real gases behave more ideally?

Chap 6 list
Calculate the energy of a photon
Predict whether a photon is absorbed or released by an electronic transition (the movement of an electron from one orbital to another).

The principle difference between Bohr's atom and the quantum mechanical model of the atom.
Bohr model
the electron is a particle
one quantum number can be used to specify the energy of an electron
the path of the electron can be described
Quantum mechanical model
the electron is a wave
the probability of finding an electron in a given volume of space can be determined,
but the electron does not "orbit" like a moon
four quantum numbers are required to specify the energy of an electron
Quantum numbers
allowed values
correspondence between orbital type and quantum number l.
e.g. $l=0$ is an s orbital
correspondence between number of orbitals in a given type and m_{l}.
e.g. $l=1$ is a p orbital type, and the allowed m_{l} values for the $l=1$ type orbital are $1,0,-1$. Thus, there are 3 p orbitals in a given principle energy level

Electron Configuration

be able to determine ground state electron configurations for neutral elements be able to determine ground state electron configurations for monoatomic ions

Energy level diagrams
be able to fill in the electrons in an energy level diagram
Trends
Know the trends in the following atomic properties: atomic radius, ionization energy, and electronegativity

