PHYS 0109 pre-test 2

You can use your book and your notes if you wish. You cannot work on this assignment with a friend.

Simple Rules for the Solubility of Salts in Water (From Zumdahl, Chemistry, 3e)

- 1. Most nitrate (NO₃⁻) salts are soluble.
- 2. Most salts containing the alkali metal ions (Li⁺, Na⁺, K⁺, Cs⁺, Rb⁺) and the ammonium ion (NH₄⁺) are soluble.
- 3. Most chloride, bromide and iodide salts are soluble. Notable exceptions are salts containing the ions Ag^+ , Pb^{2+} , and Hg_2^{2+} .
- 4. Most sulfate salts are soluble. Notable exceptions are BaSO₄, PbSO₄, HgSO₄, and CaSO₄.
- 5. Most hydroxide salts are only slightly soluble. The important soluble hydroxides are NaOH and KOH. The compounds Ba(OH)₂, Sr(OH)₂, and Ca(OH)₂ are marginally soluble.
- 6. Most sulfide (S^{·2}), carbonate (CO_3^{2}), chromate (CrO_4^{2}), and phosphate (PO_4^{-3}) are only slightly soluble.
- 1. a. Determine the concentration of Cl in 35 mL of a 0.500 M MgCl₂.

b. 25.0 mL of a 0.350 M NaCl solution are added to 35.0 mL of a 0.500 M MgCl₂ solution. Assuming the volumes are additive, determine the concentration of Cl in M.

2. Silver oxide can be removed from silver using H₂. The following equation describes the reaction.

$$H_{2(g)} + Ag_2O_{(s)} \longrightarrow H_2O_{(g)} + 2 Ag_{(s)}$$

Is this an oxidation-reduction reaction? What is being oxidized, how many electrons are moved from what element to what element?

- 3. $0.3400 \text{ g Sr}(\text{NO}_3)_2$ are placed in a 250.0-mL volumetric flask. Water is added so that the volume is 250.0 mL. What is the concentration, in M, of the solution?
- 4. Lead ions react with iodide to form lead(II) iodide. How many grams of NaI are required to precipitate all of the lead from 25.0 mL of a 3.5 M lead(II) nitrate solution as lead(II) iodide.

a. balanced equation

b. Grams of NaI

5. 44.30 mL of a 0.100 M NaOH solution are required to neutralize 0.5649 g of an unknown diprotic acid. Determine the molar mass of the diprotic acid?

- 6. Identify the products of the following reactions and write balanced chemical equations. If no reaction occurs, write NR.
- 1. $H_2SO_4(aq) + Mg(OH)_2(s) -->$
- 2. BaCl₂(aq) + Pb(NO₃)₂(aq) -->
- 3. $K_2SO_4(aq) + NaCl(aq) -->$
- 4. 3 NaOH(aq) + $H_3PO_4(aq) ->$
- 5.(Hint: a violent reaction that releases gas occurs)

Na(s) + HCl(aq) -->

6. HNO₃(aq) + NaCl(aq) -->