Common Ion Effects

If two reactions both involve the same ion, then one reaction can effect the equilibrium position of the other reaction.
The ion that appears in both reactions is the common ion. Buffers are made by combining an acid with its conjugate base.

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \\
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}(\mathrm{aq}) \longrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})
\end{gathered}
$$

The acetic acid contains an acetate ion. Sodium acetate also contains an acetate ion. Sodium acetate and acetic acid share a common ion, the acetate ion, so the addition of sodium acetate can affect an acetic acid equilibrium.

Common Ion Effects

If two reactions both involve the same ion, then one reaction can effect the equilibrium position of the other reaction.
The ion that appears in both reactions is the common ion. Buffers are made by combining an acid with its conjugate base.

$$
\begin{gathered}
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \\
\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}(\mathrm{aq}) \longrightarrow \mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})+\mathrm{Na}^{+}(\mathrm{aq})
\end{gathered}
$$

The acetic acid contains an acetate ion. Sodium acetate also contains an acetate ion. Sodium acetate and acetic acid share a common ion, the acetate ion, so the addition of sodium acetate can affect an acetic acid equilibrium.

Any common ion

Well, the same thing happens in all equilibria.

$$
\text { For } \mathrm{CuBr} \mathrm{~K}_{\mathrm{sp}}=4.2 \times 10^{-8}
$$

The solubility of CuBr will be lower in a 0.05 M NaBr solution than it would be in pure water.

Let's start with a saturated CuBr solution.

In a saturated CuBr solution

$$
\begin{gathered}
4.2 \times 10^{-8}=\left[\mathrm{Cu}^{+}\right]\left[\mathrm{Br}^{-}\right] \\
{\left[\mathrm{Cu}^{+}\right]=\left[\mathrm{Br}^{-}\right]=0.000205 \mathrm{M}}
\end{gathered}
$$

Now, what is the solubility of CuBr in a 0.050 M NaBr solution?

Let's start with a saturated CuBr solution.

In a saturated CuBr solution

$$
\begin{gathered}
4.2 \times 10^{-8}=\left[\mathrm{Cu}^{+}\right]\left[\mathrm{Br}^{-}\right] \\
{\left[\mathrm{Cu}^{+}\right]=\left[\mathrm{Br}^{-}\right]=0.000205 \mathrm{M}}
\end{gathered}
$$

Now, what is the solubility of CuBr in a 0.050 M NaBr solution?
Simply set up an equilibrium table that has a starting conc of $\mathrm{Br}^{-}=$to $0.050 \mathrm{M} . .$.

start	$\begin{aligned} & \mathrm{CuBr} \\ & \text { solid } \end{aligned}$	$\begin{gathered} \mathrm{Cu}^{+} \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{Br}^{-} \\ 0.050 \end{gathered}$
change		+ x	+ x
equilibrium		X	$0.050+\mathrm{x}$
	4.2×1	$+\mathrm{x})$	
	$4.2 \times$	50)	

Determine the solubility of $\mathrm{CaSO}_{4}, \mathrm{~K}_{\text {sp }}=6.1 \times 10^{-5}$, in a $0.0050 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution.

Determine the solubility of CaCl_{2} in a $0.0050 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution.

Determine the solubility of $\mathrm{CaSO}_{4}, \mathrm{~K}_{\text {sp }}=6.1 \times 10^{-5}$, in a $0.0050 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution.

$$
\mathrm{CaSO}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

$$
\begin{array}{lcc}
\text { solid } & 0 & 0.0050 \\
\text { solid } & +\mathrm{x} & +\mathrm{x} \\
\text { solid } & \mathrm{x} & 0.0050+\mathrm{x} \\
& \\
& \mathrm{x}(0.0050+\mathrm{x})=6.1 \times 10^{-5}
\end{array}
$$

Solubility is 0.0057 M
Determine the solubility of CaCl_{2} in a $0.0050 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution.

Determine the solubility of $\mathrm{CaSO}_{4}, \mathrm{~K}_{\text {sp }}=6.1 \times 10^{-5}$, in a $0.0050 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution.

$$
\mathrm{CaSO}_{4}(\mathrm{~s}) \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

solid	0	0.0050
solid	+x	+x
solid	x	$0.0050+\mathrm{x}$

$$
x(0.0050+x)=6.1 \times 10^{-5}
$$

Solubility is 0.0057 M
Determine the solubility of CaCl_{2} in a $0.0050 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution. $\left(\mathrm{K}_{\mathrm{sp}}\right.$ of $\left.\mathrm{CaCl}_{2} \gg \mathrm{~K}_{\text {sp }} \mathrm{CaSO}_{4}\right)$

Solubility is 0.012 M

Precipitation

What concentration of NaCl is required to precipitate AgCl from a $0.10 \mathrm{M}_{\mathrm{AgNO}}^{3}$ solution?

Precipitation

What concentration of NaCl is required to precipitate AgCl from a $0.10 \mathrm{M}_{\mathrm{AgNO}}^{3}$ solution?

$$
\begin{array}{lll}
\mathrm{NaCl}(\mathrm{~s}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) & \mathrm{K}>10 \\
\mathrm{AgNO}_{3}(\mathrm{~s}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons} \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) & \mathrm{K}>10
\end{array}
$$

So, all of the NaCl and the AgNO_{3} dissolves and dissociates.

$$
\begin{aligned}
\mathrm{NaCl}(\mathrm{aq}) & \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
\mathrm{AgNO}_{3}(\mathrm{aq}) & \longrightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
\end{aligned}
$$

Precipitation

What concentration of NaCl is required to precipitate AgCl from a $0.10{\mathrm{M} \mathrm{AgNO}_{3} \text { solution? }}^{\text {? }}$

$$
\begin{array}{lll}
\mathrm{NaCl}(\mathrm{~s}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) & \mathrm{K}>10 \\
\mathrm{AgNO}_{3}(\mathrm{~s}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons} \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) & \mathrm{K}>10
\end{array}
$$

Since we are mixing two solution, we know all of the NaCl and the AgNO_{3} is dissolved and dissociated.

$$
\begin{aligned}
\mathrm{NaCl}(\mathrm{aq}) & \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
\mathrm{AgNO}_{3}(\mathrm{aq}) & \longrightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
\end{aligned}
$$

Now, we have to worry about the possibility of a metathesis reaction (ions switching) occurring.

$$
\begin{aligned}
\mathrm{NaNO}_{3}(\mathrm{~s}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) & \mathrm{K}>10 \\
\mathrm{AgCl}(\mathrm{~s}) \stackrel{\mathrm{H}_{2} \mathrm{O}}{\rightleftharpoons} \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) & \mathrm{K}=1.6 \times 10^{-10}
\end{aligned}
$$

Yes, AgCl can precipitate because it is not very soluble

The reaction is

$$
\begin{array}{lll}
\mathrm{AgCl}(\mathrm{~s}) \rightleftharpoons & \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) & \mathrm{K}_{\mathrm{sp}}=1.6 \times 10^{-10} \\
\text { solid } & 0.10 \quad ? &
\end{array}
$$

and if $\mathrm{Q} \geq \mathrm{K}$ then a precipitate will form.

The reaction is

$$
\begin{array}{lll}
\mathrm{AgCl}(\mathrm{~s}) \rightleftharpoons & \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) & \mathrm{K}_{\mathrm{sp}}=1.6 \times 10^{-10} \\
\text { solid } & 0.10 & ?
\end{array}
$$

and if $\mathrm{Q} \geq \mathrm{K}$ then a precipitate will form.

$$
\begin{aligned}
{\left[\mathrm{Ag}^{+}\right]_{\mathrm{o}}\left[\mathrm{Cl}^{-}\right]_{\mathrm{o}} } & \geq 1.6 \times 10^{-10} \\
0.10 \cdot\left[\mathrm{Cl}^{-}\right]_{\mathrm{o}} & \geq 1.6 \times 10^{-10} \\
{\left[\mathrm{Cl}^{-}\right]_{\mathrm{o}} } & \geq 1.6 \times 10^{-9}
\end{aligned}
$$

So, if $[\mathrm{NaCl}] \geq 1.6 \times 10^{-9}$ then $\mathrm{Q} \geq \mathrm{K}$ and a precipitate will form. (There is enough Cl^{-}in tap water to cause AgCl to precipitate from a AgNO_{3} solution.)

Common ion and pH dependence

The solubility of some materials displays a pH dependence
This is a common ion effect.
for example....
For $\mathrm{Cu}(\mathrm{OH})_{2} \mathrm{~K}_{\mathrm{sp}}=2.2 \times 10^{-22}$.

$$
\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{s})
$$

What is the solubility of $\mathrm{Cu}(\mathrm{OH})_{2}$ in neutral water?

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=2.2 \times 10^{-22}
$$

Set up a table, before anything dissolves $\left[\mathrm{Cu}^{2+}\right]=0$, and $\left[\mathrm{OH}^{-}\right] \sim 0$ right?

$\mathrm{Cu}(\mathrm{OH})_{2}$	Cu^{2+}	OH^{-}
solid	0	~ 0

What is the solubility of $\mathrm{Cu}(\mathbf{O H})_{2}$ in neutral water?

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=2.2 \times 10^{-22}
$$

Set up a table, before anything dissolves $\left[\mathrm{Cu}^{2+}\right]=0$, and $\left[\mathrm{OH}^{-}\right] \sim 0$ right?

$\mathrm{Cu}(\mathrm{OH})_{2}$	Cu^{2+}	OH^{-}
solid	0	~ 0

$\mathrm{NO}, \mathrm{OH}^{-}$is very small, but it is not zero. In neutral water $\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$. This reaction goes only slightly toward the products, so a concentration of $\mathbf{1 0}^{-7}$ for one of the products is going to be significant!

	$\mathrm{Cu}(\mathrm{OH})_{2}$	Cu^{2+}	OH^{-}
initial	solid	0	10^{-7}
change		+x	+2 x
equilibrium		x	$10^{-7}+2 \mathrm{x}$

What is the solubility of $\mathrm{Cu}(\mathrm{OH})_{2}$ in neutral water?

$$
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=2.2 \times 10^{-22}
$$

Set up a table, before anything dissolves $\left[\mathrm{Cu}^{2+}\right]=0$, and $\left[\mathrm{OH}^{-}\right] \sim 0$ right?
$\underset{\text { solid }}{\mathrm{Cu}(\mathrm{OH})_{2}}$
Cu^{2+}
0
OH^{-} ~ 0
$\mathrm{NO}, \mathrm{OH}^{-}$is very small, but it is not zero. In neutral water $\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$. This reaction goes only slightly toward the products, so a concentration of $\mathbf{1 0}^{-\mathbf{7}}$ for one of the products is going to be significant!

	$\mathrm{Cu}(\mathrm{OH})_{2}$	Cu^{2+}	OH^{-}
initial	solid	0	10^{-7}
change		+x	+2 x
equilibrium		x	$10^{-7}+2 \mathrm{x}$

$$
2.2 \times 10^{-22}=\mathrm{x}\left(10^{-7}+2 \mathrm{x}\right)^{2}
$$

Small X approx? Well, since 10^{-7} is much bigger than 10^{-22} - by a factor of about 10^{15} - the change, x , is going to be small as compared to 10^{-7}, so let's give the small x approx a try.

$$
\begin{aligned}
& 2.22 \times 10^{-22}=10^{-14} \mathrm{x} \\
& 2.22 \times 10^{-8}=\mathrm{x}
\end{aligned}
$$

Approximation not valid. $2.22 \times 10^{-8} / 10^{-7} \times 100=44 \%$
So, I solved it iteratively,

$$
\mathrm{x}=2.2 \times 10^{-22} /\left(10^{-7}+2 \mathrm{x}\right)^{2}
$$

I plugged in 2.2×10^{-8} for the x on the right, evaluated the expression, and repeated until the the x 's converged in 12 steps to 1.36×10^{-8}

$2.2000 \mathrm{e}-08$	$1.0610 \mathrm{e}-08$
$1.0610 \mathrm{e}-08$	$1.4972 \mathrm{e}-08$
$1.4972 \mathrm{e}-08$	$1.3029 \mathrm{e}-08$
$1.3029 \mathrm{e}-08$	$1.3845 \mathrm{e}-08$
$1.3845 \mathrm{e}-08$	$1.3493 \mathrm{e}-08$
$1.3493 \mathrm{e}-08$	$1.3643 \mathrm{e}-08$
$1.3643 \mathrm{e}-08$	$1.3579 \mathrm{e}-08$
$1.3579 \mathrm{e}-08$	$1.3606 \mathrm{e}-08$
$1.3606 \mathrm{e}-08$	$1.3595 \mathrm{e}-08$
$1.3595 \mathrm{e}-08$	$1.3600 \mathrm{e}-08$
$1.3600 \mathrm{e}-08$	$1.3597 \mathrm{e}-08$
$1.3597 \mathrm{e}-08$	$1.3598 \mathrm{e}-08$
$1.3598 \mathrm{e}-08$	$1.3598 \mathrm{e}-08$

So, the molar solubility of $\mathrm{Cu}(\mathrm{OH})_{2}=1.36 \times 10^{-8} \mathrm{M}$ in neutral water.

What is the solubility of $\mathbf{C u}(\mathbf{O H})_{2}$ if the $\mathbf{p H}$ of the solution starts at $\mathbf{1 2 . 0 0}$? (Remember, if you are given the pH of a solution then you know $\left[\mathrm{H}^{+}\right]$, unless is the question says something like starting pH .)

$$
\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{s})
$$

What is the solubility of $\mathbf{C u}(\mathbf{O H})_{2}$ if the $\mathbf{p H}$ of the solution starts at $\mathbf{1 2 . 0 0}$? (Remember, if you are given the pH of a solution then you know $\left[\mathrm{H}^{+}\right]$, unless is the question says something like starting pH)

$$
\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{s})
$$

initial
change equilibrium

$\mathrm{Cu}(\mathrm{OH})_{2}$	Cu^{2+}	OH^{-}
solid	0	$?$

What is the solubility of $\mathbf{C u}(\mathbf{O H})_{2}$ if the $\mathbf{p H}$ of the solution starts at $\mathbf{1 2 . 0 0}$? (Remember if you are given the pH of a solution then you know $\left[\mathrm{H}^{+}\right]$, unless is the question says something like starting pH)

$$
\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{s})
$$

initial
change equilibrium

$\mathrm{Cu}(\mathrm{OH})_{2}$	Cu^{2+}	OH^{-}
solid	0	10^{-2}
	+x	+2 x
	x	$10^{-2}+2 \mathrm{x}$

$$
\begin{gathered}
10^{-14}=\left[10^{-12}\right]\left[\mathrm{OH}^{-}\right] \\
{\left[\mathrm{OH}^{-}\right]=10^{-2}}
\end{gathered}
$$

What is the solubility of $\mathbf{C u}(\mathbf{O H})_{2}$ if the $\mathbf{p H}$ of the solution starts at $\mathbf{1 2 . 0 0}$? (Remember if you are given the pH of a solution then you know $\left[\mathrm{H}^{+}\right]$, unless is the question says something like starting pH)

$$
\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{s})
$$

	$\mathrm{Cu}(\mathrm{OH})_{2}$	Cu^{2+}	OH^{-}
initial	solid	0	10^{-2}
change		+x	+2 x
equilibrium		x	$10^{-2}+2 \mathrm{x}$

The change, x , is going to be small as compared to 10^{-2}, so

$$
\begin{gathered}
2.2 \times 10^{-22}=\left[\mathrm{Cu}^{2+}\right]\left(10^{-2}\right)^{2} \\
{\left[\mathrm{Cu}^{2+}\right]=2.2 \times 10^{-22} / 10^{-4}} \\
{\left[\mathrm{Cu}^{2+}\right]=2.2 \times 10^{-18}}
\end{gathered}
$$

Yep, small x approximation is valid. $4.4 \times 10^{-18} / 10^{-2} \times 100=4.4 \times 10^{-14} \%$
The molar solubility went down a great deal when the pH went from 7 to 12 !

You must be careful while doing these calculations. While the solubility is pH dependent pH is not the only factor. Take the following example...

What is the solubility of $\mathrm{Cu}(\mathrm{OH})_{2}$ in a $0.1 \mathrm{M} \mathrm{HNO}_{3}$ solution?

$$
\begin{gathered}
\text { Find }\left[\mathrm{OH}^{-}\right] \\
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
10^{-14}=0.1 \cdot\left[\mathrm{OH}^{-13}\right] \\
{[\mathrm{OH}]=10^{-13}} \\
\text { so.. } \\
2.2 \times 10^{-22}=x\left(10^{-13}\right)^{2} \\
2.2 \times 10^{-22}=10^{-26} x \\
2.2 \times 10^{4}=x
\end{gathered}
$$

Small x approximation not valid, but lets ignore that fact for a moment and focus and the answer.

You must be careful while doing these calculations. While the solubility is pH dependent pH is not the only factor. Take the following example...

What is the solubility of of $\mathrm{Cu}(\mathrm{OH})_{2}$ in a $0.1 \mathrm{M} \mathrm{HNO}_{3}$ solution?

$$
\begin{gathered}
\text { Find }[\mathrm{OH}] \\
\\
K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
10^{-14}=0.1 \cdot\left[\mathrm{OH}^{-13}\right] \\
{[\mathrm{OH}]=10^{-13}} \\
5 \text { so.. } \\
2.2 \times 10^{-22}=x\left(10^{-13}\right)^{2} \\
2.2 \times 10^{-22}=10^{-26} x \\
2.2 \times 10^{4}=x
\end{gathered}
$$

NO Way is the molar solubility 2.2×10^{4}.
That is 22,000 moles of $\mathrm{Cu}(\mathrm{OH})_{2}$ dissolved in 1 L .
OK, is 22,000 not big enough for you?
This solution would have approximately $2,100,000 \mathrm{~g}$ of $\mathrm{Cu}(\mathrm{OH})_{2}$ in a L of water

The problem changed,

$$
\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The HNO_{3} reacts with the $\mathrm{Cu}(\mathrm{OH})_{2}$ to make water and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$, and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ is soluble in water $\mathrm{Cu}(\mathrm{OH})_{2}$ continues to dissolve until the HNO_{3} is used up. Once the HNO_{3} is used up the $\left[\mathrm{Cu}^{2+}\right]=0.050 \mathrm{M}$ The Cu^{2+} concentration is determined using the stoichiometry of the neutralization reaction.

$$
0.1 \mathrm{M} \mathrm{HNO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}}{2 \mathrm{~mol} \mathrm{HNO}_{3}}=0.050 \mathrm{M} \mathrm{Cu}_{3}\left(\mathrm{NO}_{3}\right)_{2}
$$

Since $\left[\mathrm{Cu}^{2+}\right]=0.050 \mathrm{M}$ no more $\mathrm{Cu}(\mathrm{OH})_{2}$ will dissolve!

This was an acid base neutralization in disguise.

Less obvious examples of pH dependent solubility

The solubility of any salt that dissociates and forms a weak acid or a weak base will demonstrate pH dependence.
For example $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is only very slightly soluble in water, $\mathrm{K}_{\text {sp }}$ for $\mathrm{Ag}_{2} \mathrm{SO}_{4}=1.4 \times 10^{-5}$.

$$
\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

The solubility of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ will be higher in $1 \mathrm{M} \mathrm{HNO}_{3}$. Why?

Less obvious examples of pH dependent solubility

The solubility of any salt that dissociates and forms a weak acid or a weak base will demonstrate pH dependence.
For example $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ is only very slightly soluble in water, $\mathrm{K}_{\text {sp }}$ for $\mathrm{Ag}_{2} \mathrm{SO}_{4}=1.4 \times 10^{-5}$.

$$
\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

The solubility of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ will be higher in $1 \mathrm{M} \mathrm{HNO}_{3}$. Why?

$$
\mathrm{HNO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

Since $\mathrm{SO}_{2}{ }^{2-}$ is a weak base....

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{HSO}_{4}^{-}(\mathrm{aq})
$$

$$
\text { The } \mathrm{K} \text { for this reaction is } 1 / \mathrm{K}_{\mathrm{a}}=1 /\left(1.2 \times 10^{-2}\right)=83
$$

$$
\mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})
$$

So, the presence of H^{+}lowers the concentration of $\mathrm{SO}_{4}{ }^{2-}$, and, according to Le Chätelier's principle, more $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ will dissolve to replace the $\mathrm{SO}_{4}{ }^{2-}$ that was converted to $\mathrm{HSO}_{4}{ }^{-}$.

Common ion and pH dependence

The solubility of some materials displays a pH dependence
This is a common ion effect.
for example....
For $\mathrm{Cu}(\mathrm{OH})_{2} \mathrm{~K}_{\mathrm{sp}}=2.2 \times 10^{-22}$.

$$
\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{s})
$$

The solubility of any salt that produces an acid or base when it dissolves in water will be pH dependent.

$$
\begin{array}{llll}
\mathrm{NaNO}_{2} & \mathrm{~K}_{2} \mathrm{SO}_{4} & \mathrm{NaCl} & \mathrm{LiNO}_{3}
\end{array}
$$

The solubility of any metal that can form an insoluble metal hydroxide will be pH dependent.

$$
\begin{array}{llll}
\mathrm{NaCl} & \mathrm{FeCl}_{3} & \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} & \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}
\end{array}
$$

Common ion and pH dependence

The solubility of some materials displays a pH dependence
This is a common ion effect.
for example....
For $\mathrm{Cu}(\mathrm{OH})_{2} \mathrm{~K}_{\mathrm{sp}}=2.2 \times 10^{-22}$.

$$
\mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{s})
$$

The solubility of any salt that produces an acid or base when it dissolves in water will be pH dependent.

NaNO_{2}	$\mathrm{~K}_{2} \mathrm{SO}_{4}$	NaCl	LiNO_{3}
yes	yes	no	no

The solubility of any metal that can form an insoluble metal hydroxide will be pH dependent.

NaCl	FeCl_{3}	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	$\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
no	yes	yes	yes

