\qquad

A few equations:
$\mathrm{K}=\frac{\text { [products }]}{[\text { reactants }]}$
$Q=\frac{[\text { products }]_{\mathrm{o}}}{[\text { reactants }]_{\mathrm{o}}}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$\mathrm{pOH}=-\log [\mathrm{OH}]$
$\mathrm{pK} \mathrm{K}_{\mathrm{w}}=-\log \left(\mathrm{K}_{\mathrm{w}}\right)$
$\mathrm{pK}_{\mathrm{a}}=-\log \left(\mathrm{K}_{\mathrm{a}}\right)$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{OH}]$
$\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}$

A few constants:
$\mathrm{K}_{\mathrm{w}}=10^{-14}$
$\mathrm{pK} \mathrm{K}_{\mathrm{w}}=14$
K_{a} values for a few acids

Acid	K_{a}	pK_{a}
HSO_{4}^{-}	1.2×10^{-2}	1.92
HClO_{2}	1.2×10^{-2}	1.92
$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}	2.12
$\mathrm{CClH}_{2} \mathrm{CO}_{2} \mathrm{H}$	1.35×10^{-3}	2.780
HF	7.2×10^{-4}	3.14
HNO_{2}	4.0×10^{-4}	3.40
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	1.8×10^{-5}	4.74
$\left[{\left.\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}}^{\mathrm{H}_{2} \mathrm{PO}_{4}^{-}}\right.$	1.4×10^{-5}	4.85
HOCl^{-5}	6.2×10^{-8}	7.21
HCN^{2}	3.5×10^{-8}	7.46
NH_{4}^{+}	5.2×10^{-10}	9.21
HPO_{4}^{2-}	4.8×10^{-13}	12.32

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. The equilibrium constant, K , for the following reaction is 0.26 .

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

$\mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}$, and H_{2} are added to a reactor so that their concentrations are $0.14,0.22,0.10$, and 0.033 M respectively.
a. (8 pts.) Determine Q for this reaction.
b. (6 pts .) Is this reaction at equilibrium? If the reaction is not at equilibrium, in which direction will the reaction proceed? Explain.
2. The equilibrium constant, K , for the following reaction is 7.5 .

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}=-58 \mathrm{~kJ}
$$

a. (4 pts.) Does this reaction favor the reactants or the products?
b. (4 pts.) Which change would encourage more product formation, a decrease or an increase in the temperature?
c. (4 pts.) What would happen to the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ if some of the NO_{2} condensed into a liquid?
3. (4 pts. ea.) In the following reactions indicate whether the underlined molecule is acting as an acid or a base.
a.
$\mathrm{HCl}(\mathrm{aq})+\underline{\mathrm{H}_{2} \mathrm{O}}(\mathrm{l}) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
b.
$\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
c. $\quad \underline{H N O}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
d.
$\left.\mathrm{NH}_{3}(\mathrm{aq})+\underline{\mathrm{H}_{2} \mathrm{O}}{ }^{(\mathrm{l}}\right) \longrightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
4. (4 pts. each) Determine the formulas for the following molecules.
a. The conjugate base of $\mathrm{H}_{2} \mathrm{O}$ is
b. The conjugate acid of $\mathrm{HSO}_{4}{ }^{-}$is
c. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is
d. The conjugate acid of $\mathrm{H}_{2} \mathrm{O}$ is
5. The n-butyl anion, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{-}$, is a very strong base.
a. (6 pts.) Write the balanced chemical equation for the reaction of this anion with water.
b. (6 pts.) Write the K_{b} expression for the reaction of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{-}$with $\mathrm{H}_{2} \mathrm{O}$.
6. (4 pts. each) For each of the following pairs of acids, identify (circle) the stronger acid.
a.

b.

d. $\mathrm{H}-\mathrm{O}-\mathrm{Br}=\mathrm{O}$ or

c.

$$
\mathrm{H}-\mathrm{Br} \text { or } \mathrm{H}-\mathrm{F}
$$

-

or

. $\mathrm{H}-\mathrm{Br}$ or H - F
.

Determine the pH of the following solutions.
7. (10 pts.$) \mathrm{A} 0.056 \mathrm{M} \mathrm{KOH}$ solution.
$\mathrm{KOH}(\mathrm{aq}) \longrightarrow \mathrm{K}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
8. (10 pts.$) \mathrm{A} 0.44 \mathrm{M} \mathrm{HBr}$ solution.
$\mathrm{HBr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$
9. (10 pts .) A 0.36 M HOCl solution.
$\mathrm{HOCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq})$
10. (8 pts.) Provide an explanation for the observation that HI is a stronger acid than HF .

