A few equations:	K _a value		1	
K = [products]	Acid	K _a	pK _a	2.
[reactants] $Q = [products]_0$	HSO ₄ -	1.2 x 10 ⁻²	1.92	
[reactants] ₀	HClO ₂	1.2 x 10 ⁻²	1.92	3
$pH = -log[H_3O^+]$	H_3PO_4	7.5 x 10 ⁻³	2.12	4
$pOH = -log[OH^{\cdot}]$	CCIH ₂ CO ₂ H	1.35 x 10 ⁻³	2.780	
$pK_w = -log(K_w)$	HF	7.2 x 10 ⁻⁴	3.14	5
$pK_a = -log(K_a)$	HNO_2	4.0 x 10 ⁻⁴	3.40	6
$K_w = [H_3O^+][OH^-]$	CH ₃ CO ₂ H	1.8 x 10 ⁻⁵	4.74	
$pK_w = pH + pOH$	$[Al(H_2O)_6]^{3+}$	1.4 x 10 ⁻⁵	4.85	7
A few constants:	$\mathrm{H_2PO_4}^-$	6.2 x 10 ⁻⁸	7.21	8
$K_{\rm w} = 10^{-14}$	HOCl	3.5 x 10 ⁻⁸	7.46	
$pK_w = 14$	HCN	6.2 x 10 ⁻¹⁰	9.21	9
	NH ₄ ⁺	5.6 x 10 ⁻¹⁰	9.25	10

4.8 x 10⁻¹³

12.32

HPO₄²⁻

1	The	equilibrium	constant	K	for t	he fol	llowing	reaction	is	0.26
т.	1110	cquiiibiiaiii	combutin,	тъ,	TOI U	110 101	110 W 1115	1 Caculon	10	0.20.

$$CH_4(g) + H_2O(g)$$
 \longrightarrow $CO(g) + 3 H_2(g)$

 CH_4 , H_2O , CO, and H_2 are added to a reactor so that their concentrations are 0.14, 0.22, 0.10, and 0.033 M respectively.

a. (8 pts.) Determine Q for this reaction.

b. (6 pts.) Is this reaction at equilibrium? If the reaction is not at equilibrium, in which direction will the reaction proceed? Explain.

2. The equilibrium constant, K, for the following reaction is 7.5.

$$2 \text{ NO}_2 \text{ (g)} \longrightarrow \text{N}_2 \text{O}_4 \text{ (g)} \qquad \Delta H = -58 \text{ kJ}$$

- a. (4 pts.) Does this reaction favor the reactants or the products?
- b. (4 pts.) Which change would encourage more product formation, a decrease or an increase in the temperature?
- c. (4 pts.) What would happen to the concentration of N_2O_4 if some of the NO_2 condensed into a liquid?

3. (4 pts. ea.) In the following reactions indicate whether the underlined molecule is acting as an acid or a base.

a.
$$HCI(aq) + H_2O(I) \longrightarrow H_3O^+(aq) + CI^-(aq)$$

b.
$$CH_3NH_2$$
 (aq) + H_2O (l) \longrightarrow $CH_3NH_3^+$ (aq) + OH^- (aq)

C.
$$HNO_3 (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + CI^- (aq)$$

d.
$$NH_3 (aq) + \underline{H_2O (I)} \longrightarrow NH_4^+ (aq) + OH^- (aq)$$

- 4. (4 pts. each) Determine the formulas for the following molecules.
- a. The conjugate base of H_2O is
- b. The conjugate acid of HSO₄⁻ is
- c. The conjugate base of H_2PO_4 is
- d. The conjugate acid of H₂O is
- 5. The *n*-butyl anion, CH₃CH₂CH₂CH₂-, is a very strong base.
- a. (6 pts.) Write the balanced chemical equation for the reaction of this anion with water.
- b. (6 pts.) Write the K_b expression for the reaction of $CH_3CH_2CH_2CH_2^-$ with $H_2O.$

6. (4 pts. each) For each of the following pairs of acids, identify (circle) the stronger acid.

c.
$$H \longrightarrow Br$$
 or $H \longrightarrow F$ d. $H \longrightarrow O \longrightarrow Br = O$ or $H \longrightarrow O \longrightarrow Cl = O$

Determine the pH of the following solutions.

7. (10 pts.) A 0.056 M KOH solution.

KOH (aq)
$$\longrightarrow$$
 K⁺ (aq) + OH⁻ (aq)

8. (10 pts.) A 0.44 M HBr solution.

$$HBr (aq) + H2O (I) \longrightarrow H3O+ (aq) + Br- (aq)$$

9. (10 pts.) A 0.36 M HOCl solution.

$$HOCI (aq) + H_2O (I) \longrightarrow H_3O^+ (aq) + CIO^- (aq)$$

 $10.\ (8\ \mathrm{pts.})$ Provide an explanation for the observation that HI is a stronger acid than HF.