Name _____ PHYS 0111 (Gen Chem II)

Test 3 Spring 2005

A few equations:	K _a values for a few acids			1
K = [products]	Acid	K _a	pK _a	2.
[reactants]	HSO ₄ -	1.2 x 10 ⁻²	1.92	
$Q = \underline{\text{[products]}_0}$ [reactants] ₀	HClO ₂	1.2 x 10 ⁻²	1.92	3
$pH = -log[H_3O^+]$	H ₃ PO ₄	7.5 x 10 ⁻³	2.12	4.
$pOH = -log[OH \cdot]$	CClH ₂ CO ₂ H	1.35 x 10 ⁻³	2.780	
$pK_w = -log(K_w)$	HF	7.2 x 10 ⁻⁴	3.14	5
$pK_a = -log(K_a)$	HNO ₂	4.0 x 10 ⁻⁴	3.40	6
$K_w = [H_3O^+][OH^\cdot]$	CH ₃ CO ₂ H	1.8 x 10 ⁻⁵	4.74	
$pK_w = pH + pOH$	$[Al(H_2O)_6]^{3+}$	1.4 x 10 ⁻⁵	4.85	7
A few constants:	$H_2PO_4^-$	6.2 x 10 ⁻⁸	7.21	8
$K_w = 10^{-14}$	HOCI	3.5 x 10 ⁻⁸	7.46	0
pK _w = 14	HCN	6.2 x 10 ⁻¹⁰	9.21	9
	NH4 ⁺	5.6 x 10 ⁻¹⁰	9.25	10
	HPO ₄ ^{2–}	4.8 x 10 ⁻¹³	12.32	

1. The equilibrium constant, K, for the following reaction is 0.26.

 $CH_4(g) + H_2O(g) \longrightarrow CO(g) + 3 H_2(g)$

 CH_4 , H_2O , CO, and H_2 are added to a reactor so that their concentrations are 0.14, 0.22, 0.10, and 0.033 M respectively.

- a. (8 pts.) Determine Q for this reaction.
- $Q = (0.10)(0.033)^3 = 0.00011668$ (0.14)(0.22)
- b. (6 pts.) Is this reaction at equilibrium? If the reaction is not at equilibrium, in which direction will the reaction proceed? Explain.

No, the reaction is not at equilibrium, the Q is too low. To raise Q, reactants must be converted to products until Q = K.

2. The equilibrium constant, K, for the following reaction is 7.5.

 $2 \text{ NO}_2(g) \longrightarrow \text{N}_2\text{O}_4(g) \qquad \Delta H = -58 \text{ kJ}$

a. (4 pts.) Does this reaction favor the reactants or the products?

The products

b. (4 pts.) Which change would encourage more product formation, a decrease or an increase in the temperature?

a decrease in temperature

c. (4 pts.) What would happen to the concentration of N_2O_4 if some of the NO_2 condensed into a liquid?

The N_2O_4 would be consumed.

3. (4 pts. ea.) In the following reactions indicate whether the underlined molecule is acting as an acid or a base.

а.	HCl (aq) + $H_2O(I) \longrightarrow H_3O^+(aq) + CI^-(aq)$	base
b.	CH_3NH_2 (aq) + H ₂ O (I) \longrightarrow $CH_3NH_3^+$ (aq) + OH ⁻ (aq)	base
c.	$\frac{\text{HNO}_3}{$	acid
d.	$NH_3(aq) + H_2O(I) \longrightarrow NH_4^+(aq) + OH^-(aq)$	acid

4. (4 pts. each) Determine the formulas for the following molecules.

a.	The conjugate base of H ₂ O is	HO⁻
b.	The conjugate acid of $HSO_{4^{-}}$ is	H_2SO_4
c.	The conjugate base of $H_2PO_4^-$ is	HPO4 ²⁻
d.	The conjugate acid of H ₂ O is	H₃O⁺

5. The *n*-butyl anion, CH₃CH₂CH₂CH₂⁻, is a very strong base.

a. (6 pts.) Write the balanced chemical equation for the reaction of this anion with water.

 $CH_3CH_2CH_2CH_2^-$ (aq) + $H_2O(I)$ \longrightarrow $CH_3CH_2CH_2CH_3(g)$ + OH^- (aq)

b. (6 pts.) Write the K_b expression for the reaction of $CH_3CH_2CH_2CH_2^-$ with H_2O .

$$K_{b} = \underline{[OH^{-}][CH_{3}CH_{2}CH_{2}CH_{3}]}$$
$$[CH_{3}CH_{2}CH_{2}CH_{2}^{-}]$$

6. (4 pts. each) For each of the following pairs of acids, identify (circle) the stronger acid.

Determine the pH of the following solutions.

7. (10 pts.) A 0.056 M KOH solution.

KOH (aq) \longrightarrow K⁺ (aq) + OH⁻ (aq) pOH = -log(0.056) pKw = pH + pOH 14 = pH + 1.2518 pH = 12.75

8. (10 pts.) A 0.44 M HBr solution.

HBr (aq) + H₂O (I) \longrightarrow H₃O⁺ (aq) + Br⁻ (aq) pH = -log(0.44) pH = 0.36

9. (10 pts.) A 0.36 M HOCl solution.

HOCI (aq) + $H_2O(I)$ \longrightarrow $H_3O^+(aq)$ + $CIO^-(aq)$

	HOCI	H₃O⁺	CIO ⁻
i	0.36	~0	0
С	-x	+X	+X
е	0.36 - x	Х	Х
x ²/	(0.36 -x) = 3.5 x 10 ⁻⁸	valid?	
small x approx 0.36 - x = 0.36		0.00011225/0.36 * 100 = 0.031%	

x = [(3.5 x 10⁻⁸)(0.36)]^{1/2} = 0.00011225 pH = -log(0.00011225) = 3.95

10. (8 pts.) Provide an explanation for the observation that HI is a stronger acid than HF.

The negative charge on an iodide ion is more diffuse than the negative charge on a fluoride ion (iodide is larger than fluoride). So, the iodide ion is not as strongly attracted to the H^+ in HI as the fluoride ion is attracted to the H^+ in HF.

yes