Name PHYS 0111 (Gen Chem 2)

A few equations:

K_a values for a few acids

Test 4 Spring 2005

ritew equations.				1
K = [products]	Acid	K _a	pK _a	1
[reactants]	HSO ₄ -	1.2 x 10 ⁻²	1.92	2
$Q = \frac{\text{[products]}_0}{[\text{reactants}]_0}$	HClO ₂	1.2 x 10 ⁻²	1.92	3.
$pH = -log[H_3O^+]$	H ₃ PO ₄	7.5 x 10 ⁻³	2.12	
$pOH = -log[OH \cdot]$	CClH ₂ CO ₂ H	1.35 x 10 ⁻³	2.780	4
$pK_w = -\log(K_w)$	HF	7.2 x 10 ⁻⁴	3.14	5
$pK_a = -log(K_a)$	HNO ₂	4.0 x 10 ⁻⁴	3.40	
$K_w = [H_3O^+][OH^\cdot]$	CH ₃ CO ₂ H	1.8 x 10 ⁻⁵	4.74	6
$pK_w = pH + pOH$	$[Al(H_2O)_6]^{3+}$	1.4 x 10 ⁻⁵	4.85	7
$pH = pK_a + \log[A^-]/[HA]$	$H_2PO_4^-$	6.2 x 10 ⁻⁸	7.21	
A few constants:	HOCI	3.5 x 10 ⁻⁸	7.46	8
$K_w = 10^{-14}$	HCN	6.2 x 10 ⁻¹⁰	9.21	
$pK_w = 14$	NH.+	5.6×10^{-10}	9.25	
		J.O A 10	10.00	
	$HPO_4^{2^-}$	4.8×10^{-13}	12.32	

1. (10 pts.) Determine the solubility of BaCO₃. For BaCO₃, $K_{sp} = 5.1 \times 10^{-9}$.

2. a. (6 pts.) Using the information provided below, determine the K for the following reaction.

 $Cu(OH)_2(aq) + 2 H_3O^+(aq) - Cu^{2+}(aq) + 4 H_2O(I)$

 $2 H_2O(I) \implies H_3O^+(aq) + OH^-(aq)$ $K_w = 10^{-14}$

 $Cu(OH)_2(s) \longrightarrow Cu^{2+}(aq) + 2 OH^{-}(aq)$ $K_{sp} = 2.2 \times 10^{-22}$

b. (6 pts.) Is Cu(OH)₂ considered soluble in water?

c. (4 pts.) Will $Cu(OH)_2$ dissolve in aqueous nitric acid? Explain.

3. a. (10 pts.) Determine the concentration of OH⁻ required to precipitate Mg(OH)₂ from a 0.105 M Mg(NO₃)₂ solution. For Mg(OH)₂ K_{sp} = 8.9×10^{-2} .

- 4. A solution was made by combining 20.0 mL of a 0.0340 M KOH solution with 100.0 mL of a solution that has an initial NH_4Cl concentration of 0.100 M and an initial NH_3 concentration of 0.110 M.
- (10 pts.) Determine the pH of the resulting solution, and make certain to write any balanced chemical equations that are needed to determine the pH.

5. (10 pts.) A solution was prepared by dissolving 0.10 mol of HCl and 0.10 mol of NaCl in 250 mL of water. Is this solution a buffer? Explain.

6. (10 pts.) Suggest two acid-base conjugate pairs that could be used to make a buffer that has a pH of approximately 7.3. Refer to the table on the cover page for a list of acids and K_a (pK_a) values.

- 7. The pH of a buffer (solution 1) that is 0.40 M in H_3PO_4 and 0.40 M in $H_2PO_4^-$ is the same as the pH of a buffer (solution 2) that is 0.10 M in H_3PO_4 and 0.10 M in $H_2PO_4^-$.
- a. (6 pts.) Which of these solutions has a higher capacity for absorbing protons? Explain.

- b. When 0.0010 mol of OH^- is added to 100 mL of each of the solutions described above, the pH of the solutions will change.
 - i. (4 pts.) Will the pH of the solutions decrease or increase? Explain.

ii. (4 pts.) The pH of which solution will change more?

- 8. (2 pts each) At the end of a titration, the following chemicals remained in solution. Will the solutions be acidic, basic, or neutral?
- a. $KCIO_3$ b. CH_3CO_2Na
- $\label{eq:c.nonlinear} c. \quad \mathsf{NH}_4\mathsf{NO}_3 \qquad \qquad d. \quad \mathsf{Na}_2\mathsf{SO}_4$