Common solvents used in organic chemistry.

THF =
$$\begin{pmatrix} 0 \\ \end{pmatrix}$$
 Et₂O = $\begin{pmatrix} 0 \\ \end{pmatrix}$

$$DMSO = \int_{S}^{O}$$

1. ___

- 1. (6 pts. ea.) Predict the outcome of the following reactions. Remember to use wedge and dashed bonds to indicate the stereochemical outcome of the reaction where appropriate.

a.
$$S_{N}2$$

$$\stackrel{\stackrel{.}{\underline{=}}}{\underset{Br}{\underline{=}}}$$

$$\frac{\text{CH}_{3}\text{CH}_{2}\text{SH}}{\text{THF}}$$

$$\begin{array}{c|c} b. & & \\ S_N 1 & & \\ \hline \\ Br & \\ \end{array}$$

c. S_N1

- 8. _____

9. __

2. For the following pairs of molecules (a. 4 pts.) circle the nucleophilic atom, and (b. 3 pts. ea.) determine which is the better nucleophile under the given conditions.

CH₃SNa CH₃SH	CH₃SNa CH₃ONa
solvent: acetone substrate: 1-bromobutane	solvent: THF substrate: 1-bromobutane
CI- Br- solvent: isopropanol substrate: CH ₃ OSO ₂ CF ₃ (-OSO ₂ CF ₃ is an amazing leaving group)	solvent: THF substrate: 2-bromobutane

3. (10 pts.) Explain why increasing the concentration of the nucleophile in the following reaction doesn't increase the rate of the reaction.

- 4. a. (4 pts.) Draw an S_N2 reaction that shows that the stereochemistry of a chiral α -C is inverted.
 - b. (3 pts.) Include the transition state as part of the reaction.
 - c. (3 pts.) Explain why the stereochemistry of the α -C must be inverted.

 $5. (10 ext{ pts.})$ The synthesis of 3.3-dimethyl-2-butanol was attempted as indicated below, but 2.3-dimethyl-2-butanol was produced instead.

Draw a mechanism that explains the observed outcome of the reaction.

6. (4 pts. ea.) Determine whether the following reactions would be likely to occur via an S_N1 , an S_N2 , or a combination of S_N1 and S_N2 mechanisms.

CH₃OH CH₃OH	Br I ⁻ acetone
+OH ₂ Br- H ₃ O+	NH ₃ Et ₂ O

b. (4 pts.) How can protic solvents encourage carbocation formation in an S_N1 reaction?

8. (8 pts.) Which is the better leaving group, I- or Cl-? Explain your response.

9. With the help of an enzyme adrenaline is synthesized during the so-called "fight or flight" response. The reaction is a biochemical example of nucleophilic substitution.

a. (3 pts.) Identify the atom that acts as the nucleophile.

b. (3 pts.) Identify the leaving group.

c. (3 pts.) Is this an S_N2 or S_N1 reaction. Explain your choice.