Name CHEM 0203 (Organic)	Test 1 (2/20) Spring 2015
1. (12 pts.) Draw resonance structures for the following molecules. Do not include an resonance structure that would be considered insignificant contributors to the resonance hybrid.	1
a. N	2
	3
	4
	5
	6
b.	7
✓o	8
	9

- 2. (10 pts.) The skeletal structure of benzene is drawn to the right. The skeletal structure drawn makes a prediction about bond lengths in a benzene molecule, but the prediction is not true.
- a. What is the prediction the the structure makes regrading the $\rm C$ to $\rm C$ bond lengths in benzene.

b. What is the reality about the C to C bond lengths in benzene.

3. (12 pts.) For each set of resonance structures rank the structures in order of increasing stability. In the event of a tie, assign the same rank.

4. (12 pts.) Draw the resonance hybrids for the resonance structures in question 3. a. and 3. b.a.

- 5. (4 pts.) Do the resonance hybrids in 4.a. and 4.b. more strongly resemble the lowest energy resonance structures in 3.a and 3.b. or the highest?
- 6. (12 pts.) Predict the products (include all products and byproducts; i.e., write a balanced chemical equation) for the following nucleophilic substitution reactions. Ignore the stereochemistry of the products.

7. (12 pts.) Determine whether the following molecules could participate in a nucleophilic substitution via an S_N2 and/or an S_N1 mechanism. If both mechanisms are possible, write "both". If neither mechanism is possible write "neither".

8. A mechanism for a nucleophilic substitution reaction is drawn below.

- a. (8 pts.) What kind of mechanism is pictured, an S_N1 or S_N2 mechanism.
- b. (6 pts.) Draw the transition state for this reaction. Include δ^+ and δ^- to indicate where significant charges may be developing (Ignore tiny dipoles between C and H).

9. Protic solvents reduce the nucleophilicity of nucleophiles.

a. (6 pts.) Draw a skeletal structure for a protic solvent (Yes, there's a space between "a" and "protic").

b. (6 pts.) How do protic solvents reduce the nucleophilicity of a nucleophile. Provide the best answer you can.

												_				
2 He	10 Ne	20.1797	År	39.948	36	Ъ	54	Xe	86	Rn	118					
	ь ال	18.998	ຼັວ	35.453	35	BL 79.904	53	—	85	At		_	71	LU	103 7	3
	ຶo	15.999	ູ່	32.065	34	Se	52	Te	84	Ро	116		70	a Y	102 NO	
	Z	14.007	_ م	30.974	33	As	51	Sb	83	Bi		_	69 69	Ξ	101 MA	
	ູບ	12.011	si •	28.086	32	Ge	50	Sn	82	Рb	114		۲ 88 ۲	Ľ	<u>و</u> ۲	
	ں	10.811	ع اد ،	26.981	31	Ga	49	Ч	81	F			67 I I _	02	ى 1	٥ ۲
					30	Zn	48	Cd	80	Hg	112		ي ع	<u>ک</u>	38 5	5
					29	Cu	47	Ag	79	Αu	Ē		65 H	2	⁹⁷	ב
					28	Ż	46	Ъd	78	Ŧ	110		64 0	5	90 0	5
					27	ပိ	45	Rh	11	L	109 Mt		: ۲	С Ц	95 A m	
					26	Е	44	Ru	26	Os	HS HS		5 5 6	En	4 0	5
					25	Mn	43	ЦС	75	Re	⁵ Bh		<u>ء</u>	E		2
					24	່ວ	42	Мо	74	>	Sg		80 80	DZ	92	2
					23	>	41	dΝ	73	Ta	Db		۲ ۵	ך ר	<u>ר</u> מ	D
					22	F	40	Zr	72	Ħf	104 Rf		2 20 20	رو ر	ک ا	
					21	Sc	39	≻	57	La	Ac					
	B B	9.012	Mg	24.305	20	Ca	38	S	20	Ba	a Ba					
1 .0079		6.941	Na	22.989	19	×	37	Cs	55	Rb	۲ ۲					
				_												