1. The molar mass of 2 -bromo- 2 -methylpentane is $165.07 \mathrm{~g} / \mathrm{mol}$; its mass spectrum does not have a peak with an $\mathrm{m} / \mathrm{z}$ of 165 . The mass spectrum does, however, contain two
2. $\qquad$ peaks with similar intensity at $\mathrm{m} / \mathrm{z}$ of 164 and 166. (a. 6 pts.) Explain the absence of the peak at 165 and (b. 6 pts.) the appearance of the two peaks at 164 and 166.
3. $\qquad$
4. 
5. $\qquad$
6. (10 pts.) A portion of a cartoon representation of a mass spectrometer is shown below.
7. $\qquad$ Describe what the electron beam does.

8. $\qquad$
9. $\qquad$
10. $\qquad$
11. $\qquad$
12. In a mass spectrometer, radical, cationic alkyl halides fragment using homolytic and heterolytic mechanisms. (a. 12 pts.) Draw the fragments that would form from the most likely heterolytic and homolytic cleavage reactions, and (b. 6 pts.) circle the fragments 10. $\qquad$ that would be observed in the mass spectrum.
heterolytic cleavage products

homolytic cleavage products
13. (10 pts.) For a molecular vibration to be IR active (seen in the infrared spectrum) what must the vibration do to the molecule.
14. (12 pts.) Circle the drawings that represent IR active vibrations.

15. (12 pts.) Carbonyl stretching vibrations absorb IR light at higher energy than ether stretching vibrations. Briefly explain why the vibration of the C to O bond in the carbonyl absorbs at higher energy.
16. (a. 2 pts.) Circle the molecule that produced the following spectrum, (b. 9 pts.) briefly explain why structures were ruled out, and (c. 3 pts.) briefly explain why your choice is the correct one.



17. (12 pts.) Determine the number of signals/peaks that are expected in the ${ }^{1} \mathrm{H}$ NMR spectra of the following molecules.

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$

18. (12 pts.) Determine the relative positions of the peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum and label the protons alphabetically starting with the protons that resonate at the highest frequency.



19. (12 pts.) Determine the multiplicity of the peak attributed to the indicated protons.



20. Based on the spectral data provided below and on the next page, (a. 10 pts .) determine the structure of the unknown $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$, (b. 4 pts.) identify the peaks for two functional groups in the IR spectrum, and (c. 4 pts.) unambiguously assign the peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum; that is, label each peak in the ${ }^{1} \mathrm{H}$ NMR spectrum alphabetically starting with an "a" at the left end of the spectrum and label the protons on the structure with the corresponding letter.



IR


| 3419 | 79 | 1425 | 49 | 1114 | 61 | 592 | 64 |
| ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| 2966 | 12 | 1412 | 47 | 1105 | 81 | 526 | 81 |
| 2939 | 26 | 1367 | 25 | 1100 | 81 |  |  |
| 2979 | 31 | 1296 | 72 | 964 | 72 |  |  |
| 1717 | 4 | 1274 | 72 | 903 | 79 |  |  |
| 1467 | 50 | 1237 | 72 | 894 | 81 |  |  |
| 1461 | 60 | 1172 | 28 | 727 | 74 |  |  |




