1. The molar mass of 2-butanone $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}\right)$ is $72.11 \mathrm{~g} / \mathrm{mol}$. Why does the mass
spectrum of the molecule have peaks at m / z equal to 72.06 and 73.06 ?
2. \qquad
Molar mass is bared an the average mass
72.06 is the exact mass of 2 -butanone molecules that contain only ${ }^{12} \mathrm{C}$
73.06 is the exact mass of the 2 -butane molecules that have $1{ }^{13} C$ aton present.
2.. In a mass spectrometer, radical, cationic alkyl halides fragment using homolytic and heterolytic mechanisms. (a. 12 pts.) Draw the fragments that would form from the most likely heterolytic and homolytic cleavage reactions, and (b. 6 pts.) circle the fragments that would be observed in the mass spectrum.
heterolytic cleavage products

α-cleavage homolytic cleavage products
3. \qquad

4. \qquad

$$
F_{2}=4-(1+3)=0
$$

10. \qquad
charge moves because of uneven distribution of
$e^{-1}=+1$ charge doesn't move 11. \qquad
because e^{-1} s evenly shared
11. (10 pts.) What is the formula of the hydrocarbon (a molecule containing only carbon and hydrogen atoms) that has a peak at a charge to mass ratio of 86 .

If other atoms are present you need to pull out C's $+H^{\prime} \mathrm{SH}_{\mathrm{H}}$ to moke room

11
is amu
4. (12 pts.) Circle the drawings that represent IR active vibrations.

net 0

no change in dipole IR inactive
5. a. (8 pts.) $\mathrm{C}-\mathrm{H}, \mathrm{O}-\mathrm{H}$, and $\mathrm{N}-\mathrm{H}$ stretching vibrations all appear at $2700 \mathrm{~cm}^{-1}$ or higher. On the other hand, $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}$, and $\mathrm{C}-\mathrm{O}$ stretching vibrations absorb IR light at $1250 \mathrm{~cm}^{-1}$ or lower. Briefly explain this difference.
less ruertia higher freq vibration
(big atom small atom
by g atom by aton
the bonds between
1 big atoms vibrate more slowly because by tans have more inertia
b. (4 pts.) Would you expect a $\mathrm{C}-\mathrm{Br}$ bond to stretch at a higher or lower frequency than a $\mathrm{C}-\mathrm{O}$ bond?

$$
\text { Coo since } O \text { is less massive thar } \operatorname{Br}
$$

6. (a. 2 pts.) Circle the molecule that produced the following spectrum, (b. 9 pts.) briefly explain why structures were ruled out, and (c. 3 pts.) briefly explain why your choice is the correct one.

3611	64	1716	4	1179	14
3416	79	1461	34	1087	64
2981	26	1454	38	996	74
2964	44	1417	27	946	49
2940	37	1366	13	761	66
2909	50	1257	74	590	57
2983	62	1206	69	617	66

7. a. (9 pts .) Determine the number of peaks that are expected in the ${ }^{1} \mathrm{H}$ NMR spectra of the following molecules, and
b. (9 pts .) determine the relative positions of the peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum and label the protons alphabetically starting with the protons) that resonate at the highest frequency.

8. (6 pts.) Explain why H_{a} and H_{b} are chemically and magnetically inequivalent.

$$
H_{a}+H_{b} \text { are diastereotapic }
$$

9. (12 pts.) Determine the multiplicity of the peak attributed to the indicated protons.

doublet quartets quartets ${ }^{\text {G/ }}$ line spectrum
10. (12 pts) ${ }^{8}$ Assign thêectrum peaks in the following ${ }^{1} \mathrm{H}$ NMR spectrum; that is, label each peak in the ${ }^{1} \mathrm{H}$ NMR spectrum alphabetically starting with an "a" at the left end of the spectrum and label the protons on the structure with the corresponding letter.

11. A molecule with the formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ produced the following IR and NMR spectra. Based on the spectral data provided below (a. 10 pts.) determine the structure of the unknown $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$, (b. 4 pts.) identify the peaks for two functional groups in the IR spectrum, and (c. 4 pts .) unambiguously assign the peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum. That is, label each peak in the ${ }^{1} \mathrm{H}$ NMR spectrum alphabetically starting with an "a" at the left end of the spectrum and label the protons on your structure with the corresponding letter.

Additional information for analyzing $\mathrm{C}=\mathrm{O}$ stretches:
amide: $\mathrm{R}(\mathrm{C}=\mathrm{O}) \mathrm{NH}_{2}<1700$
acid: 1710 usually broad for a $\mathrm{C}=\mathrm{O}$
unstrained ketone: $\mathrm{RC}(=\mathrm{O}) \mathrm{R}$ 1715, resonance stabilized ketone $\mathrm{R}=\mathrm{CHC}(=\mathrm{O}) \mathrm{R} 1690$
strained ketone:

aldehyde: $\mathrm{RC}(=\mathrm{O}) \mathrm{H}$ 1730, resonance stabilized aldehyde $\mathrm{R}=\mathrm{CHC}(=\mathrm{O}) \mathrm{H} 1705$
ester: $\mathrm{RC}(=\mathrm{O}) \mathrm{OR} 1735$, resonance stabilized ester $\mathrm{R}=\mathrm{CHC}(=\mathrm{O}) \mathrm{OR} 1715$.

Additional information for analyzing C-H stretches:
If $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ stretch at $<3000 \mathrm{~cm}^{-1}$ then look around $1400, \mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bend is at 1430 and if peak at 1380 also present then $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ is CH_{3}.

If $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ stretch at $>3000 \mathrm{~cm}^{-1}$, and not benzene gives rise to bending vibrations from 1000-600.

Table 14.1 Approximate Values of Chemical Shifts for ${ }^{1} \mathrm{H} \mathrm{NMR}^{\text {a }}$

${ }^{\text {a }}$ The values are approximate because they are affected by neighboring substituents.

