Name _____ CHEM 0203 (Organic II)

1. ____

2. _____

3. ____

4. _____

5. _____

6. _____

7.____

8._____

Common solvents used in organic chemistry.

1. (6 pts. ea.) Predict the outcome of the following substitution reactions. Remember to use wedge and dashed bonds to indicate the stereochemical outcome of the reaction where appropriate.

2. (6 pts. ea.) Predict the outcome of the following elimination reactions.

3. (6 pts. ea.) Predict the outcome of the following substitution reactions. Ignore stereochemistry.

4. The reaction of HCl with the cyclic ether on the left fails, yet it succeeds with the cyclic ether (the epoxide) on the right.

a. (6 pts.) Explain why the lefthand reaction fails.

b. (6 pts.) Explain why the righthand reaction succeeds.

5. (10 pts.) Determine which of the following molecules has the better leaving group (circle the molecule) and explain your choice.

6. (12 pts.) Determine the mechanism that is most likely to predominate (S_N1 , E1, S_N2 , or E2) under the following reaction conditions.

7. (6 pts.) Predict the product of the following reaction.

8. (8 pts.) If one wishes to make methyl-t-butyl ether (MTBE), which reaction would be the better route. Explain your response.

Acid	рК _а	Conjugate Base
н	-10	I-
HBr	-9.0	Br-
HCI	-7.0	CI-
SO3H	-6.5	SO3 ^O
H ₂ SO ₄	-5.0	HSO₄⁻
CH ₃ OH ₂ +	-2.5	CH₃OH
H₃O+	-1.7	H₂O
HF	3.2	F-
CH₃CO₂H	4.8	CH₃CO₂⁻
H ₂ S	7.0	HS⁻
HC≡N	9.1	©c≡n
NH ₄ +	9.4	NH ₃
CH₃CH₂SH	10.5	CH₃CH₂S⁻
(CH₃)₃NH+	10.8	(CH ₃) ₃ N
CH₃OH	15.5	CH₃O⁻
H ₂ O	15.7	HO-
нс≡сн	25	⊖с≡сн
H ₂	35	H-
NH ₃	36	NH₂ [−]

Relative Nucleophilicity toward CH₃I in Methanol RS⁻ > I⁻ > $\Theta_C \equiv N$ > Br⁻ > NH₃ > CI⁻ > F⁻ > CH₃OH

pKa data and Nucleophilicity order from Organic Chemistry, 6th ed. Bruice, Prentice Hall (2009)