1. (12 pts.) Draw resonance contributors for the following structures. Do not draw any structures that would be considered insignificant contributors to the resonance hybrid.
2. \qquad
a.

3. \qquad
4. \qquad
5. \qquad
6. \qquad
b.

7. \qquad
8. \qquad
9. \qquad
10. (a. 12 pts.) Rank the following resonance contributes in order of decreasing contribution to the resonance hybrid. (b. 12 pts.) Draw the resonance hybrid.
a.

b.

11. (10 pts.) For each of the molecules on the left, possible resonance contributors are drawn to the right. Some are valid, some are considered insignificant contributors, and some are simply incorrect. Label each contributor as valid, insignificant, or incorrect.

12. (12 pts.) Hydrogen atoms bonded to carbons that are adjacent to carbonyls, the so-called $\alpha-H$, can be abstracted by reasonably strong bases. Explain why the $\alpha-\mathrm{H}$ atoms on the CH_{2} can be more easily attracted by a base than the $\alpha-\mathrm{H}$ atoms on the CH_{3} in the following molecule.

13. (10 pts.) Label the following molecules as aromatic, antiaromatic, or neither.

14. (12 pts.) The amino acid tryptophan has a side chain that does not act as a base even though there is a trivalent nitrogen atom in the side chain (trivalent means bonded to three other atoms). Explain why the tryptophan side chain is not basic in spite of the presence of a trivalent nitrogen atom.

15. (12 pts.) Draw a mechanism for the following electrophilic aromatic substitution (EAS) reaction. Remember to draw electron movement arrows.

16. (6 pts. ea.) Predict the products of the following EAS reactions.

