Name	Test 4
PHYS 0203 (Organic II)	Spring 2006
1. (6 pts.) What property of the proton allows the proton to be investigated using NMF	R? 1
	2
2. (4 pts) What does NMR stand for?	3
	4
3 (4 nts, each) Identify the chemically inequivalent protons on the following molecule	5
(label them with letters. It is not necessary to correlate lettering with chemical shi	6
a. OH b. H HIIIIC H	7
	8
Br H	9
c. d. Cl	

4. (4 pts. each) Using the labeling scheme from question 3, determine the relative area of the peaks that you expect to find in the NMR spectra of the molecules.

a.	b.
с.	d.

5. (4 pts. each) For each of the indicated hydrogen atoms, determine the multiplicity (the splitting pattern) observed.

- 6. On the following page, you will find an IR spectrum and an NMR spectrum for a compound with the following formula C_4H_9Br .
- a. (6 pts.) What does the formula tell you about the structure of the molecule? That is, are there any π bonds or rings? Explain.
- b. (6 pts.) How does the IR spectrum support your response to part a.
- c. (12 pts.) Determine the structure of the molecule, and assign the peaks in the NMR spectrum to the appropriate H atoms.

7. (10 pts.) Drawn below are representations of two vibrational modes for CO₂. To the left is a representation of a symmetrical stretch, and to the right is a representation of a bending mode.

Are either of these vibrational modes IR active (can they be seen in an IR spectrum)? Explain, briefly.

8. (10 pts.) Draw a splitting tree for the protons labeled "c" in the following molecule.

- 9. On the following page, you will find an IR spectrum and an NMR spectrum for a compound with the following formula $C_5H_{10}O_2$.
- a. (6 pts.) What does the formula tell you about the structure of the molecule? That is, are there any π bonds or rings? Explain.
- b. (6 pts.) The IR spectrum reveals the presence of what functional groups (label the peak(s) on the spectrum)?
- c. (12 pts.) Determine the structure of the molecule, and assign the peaks in the NMR spectrum to the appropriate H atoms.

¹H NMR

