Today

Section 14.1 - 14.9 Introduction to Nuclear Magnetic Resonance, Shielding, Chemical Shift, and Integration

Section 14.10 - 17 Splitting and Multiplicity

Next Class

Section 14.10 - 17 Splitting and Multiplicity

> Section 14.20 13C {1H} NMR

Practice Determining Structure Based on Spectroscopic Data

Second Class from Today

Chapter 15 Carbonyl Chemistry

Third Class from Today

Chapter 15 Carbonyl Chemistry

(CH) CH3 CH CH3

Look for symmetry to make them the same Double check for diatereotopic H's when 2 groups or Hatems are "equivalent" to form diatereomers 2 stereogenenic centers are needed CH2 H's not diastereotopic CH3 H's are not diastereotopic

enationus not diastureonus

enan flowns

D

Hz

11

Why Are Some Further to the Left or Right?

Why Some Further to the Left or Right?

Practice: How many peaks? Assign letters alphabetically based on expected position in the NMR spectrum: A farthest to the left, B first peak to the right of A, etc.

≥ not diastareo-tapic (MIH a? OH's are very strange.... the H-bond with other OH's, and they can exchange * CH3 b 2 ROH = RO + ROH2 *****H 4 ^{\$} * H a 12

Characteristic Chemical Shifts

Section 14.3 - 14.7

Integration: What ratios will the computer give us if the smaller peak is assign and area of 1?

Multiplicity: Why are there several lines in some peaks?

Predicted 1H NMR Spectrum

.0

Multiplicity: Why are there several lines in some peaks?

Scalar or First Order Coupling

Multiplicity: n + 1 rule

For H to H coupling, the pattern of lines in a peak is n + 1, where n is the number of magnetically inequivalent H atoms 3 bonds away from the H atoms causing the resonance peak.

Торіс