٠,	

Today Next Class

Chap 17 Reactions at the α-C of a Carbonyl

Alkylation of the α-C of a Carbonyl Section 17.6, 17.7

Sections 17.2, 17.3: Keto-Enol Tautomerization

Benzene and Aromaticity 8.1, 8.2, 8.16 - 8.18

Section 17.1 The Acidity of α -Hs

Second Class from Today

Third Class from Today

Benzene and Aromaticity 8.1, 8.2, 8.16 - 8.18

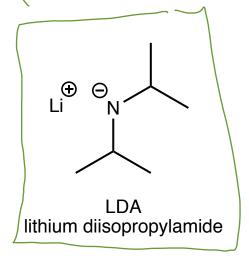
Electrophilic Aromatic Substitution 8.16 - 8.21, 18.1 -18.8

Electrophilic Aromatic Substitution 8.16 - 8.21, 18.1 - 18.8

On a separate piece of paper rework test 2 and hand in on Friday, April 14

Acidic a-Hydrogens

Section 17.1


	pKa		pKa
H_2C $N(CH_3)_2$	30	EtO CH OEt	13.3
H ₂ C OCH ₂ CH ₃	25	H ₃ C CH OEt	10.7
H ₂ C CH ₃	20	H ₃ C CH CH ₃	8.9
H ₂ C H	17	H ₃ C CH H	5.9
√ ⊝		^	(a)

$$CH_3CH_2-H$$
 $pK_a=50$

$$CH_3CH_2O-H$$
 $pK_a = 16$

$$CH_3C(O)O-H \quad pK_a=4.75$$

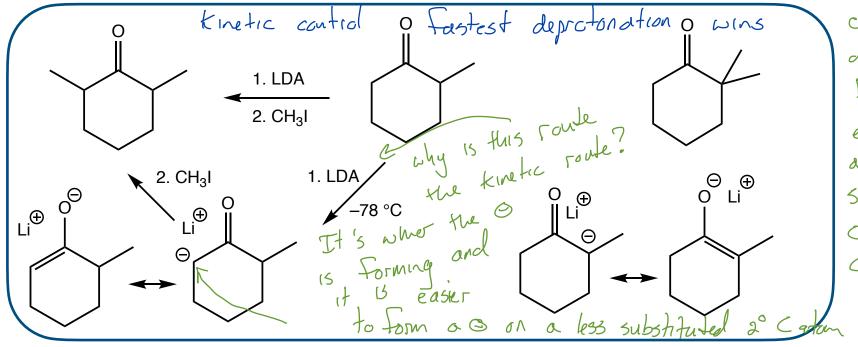
bare ... not as strong as butyl (ithium but safar.

$$pK_a LDAH^+ = 35$$

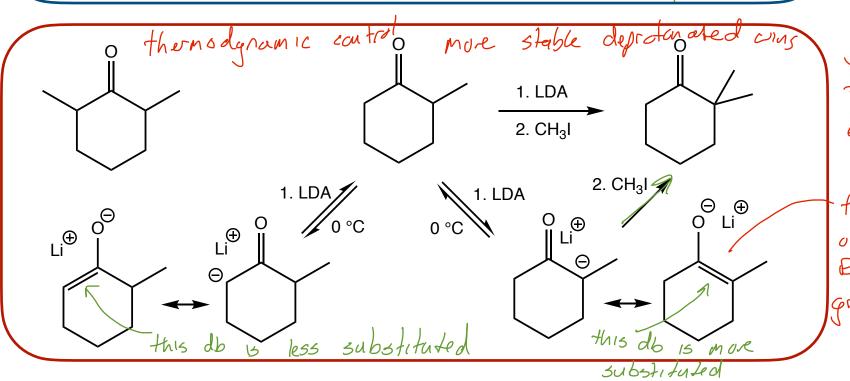
Section 17.6 Reactions at the α-Carbon - Forming a Carbanion nucleophilic 2 atom because of the symmetry of the molecule deprotonation will occur at Cz or C6... but it iodomethane C=0 double bond is lower in E than C=2 double band excellent 5N2

substrate

enamine


Reactions at the $\alpha\text{-}Carbon$ - An Alternate Method for Alkylation

Section 17.8


$$+ \bigvee_{H} \frac{\text{trace}}{\text{acid}} + \bigvee_{H_3C} \underbrace{-H_3C} + \bigvee_{H_3C} + \bigvee_{H_3C} \underbrace{-H_3C} + \bigvee_{H_3C} + \bigvee_{H_3C} \underbrace{-H_3C} + \bigvee_{H_3C} + \bigvee_$$

Kinetic vs Thermodynamic Control

Section 17.7

carbanions are
destabilized
by the increased
e density
around more
substituted
c atoms
C stability order
10 > 20 > 30

sust enough E

to get an

equalibrium

going

the concentration

of these law

E molecules will

grow over time