Section 14.3, 14.4, 14.6, 14.7 # of peaks = # of chemically different H's sometime different H's Hd Ha are 2 Mp are 3 louds bonds from away from 20 atoms, also O atom + 4 deshielded, but not bonds away as much from 2nd O Hz 3 londs avoug from 10 atom viably deshielded deshielded farthest Hd only slightly left shielded deshelded because they are 4 bonds from) atom 7.0 6.0 5.0 3.0 Chemical shift = position of peak in spreita

Table 14.1 App	proximate Values of	Chemical Shifts for	¹ H NMR ^a
Type of proton	Approximate chemical shift (ppm)	Type of proton	Approximate chemical shift (ppm)
(CH ₃) ₄ Si	0	н	6.5-8
-CH ₃	0.9		
$-CH_2-$	1.3	–C–H	9.0–10
-CH	1.4	I—Ç— <mark>H</mark>	2.5-4
$-C = C - CH_3$	1.7		
Q		Br-C-H	2.5-4
$-\overset{\parallel}{\mathrm{C}}-\overset{\parallel}{\mathrm{CH}_{3}}$	2.1		
CH ₃	2.3	CI-C-H	3-4 H K
$-C \equiv C - H$	2.4	F-C-H	4-4.5
R—O—C <mark>H</mark> ₃	3.3	RNH ₂	Variable, 1.5–4
R-C=CH ₂	4.7	ROH	Variable, 2–5
R		ArOH	Variable, 4–7
$\begin{array}{c} R-C=C-H\\ & \\ R & R \end{array}$	5.3	O -C-OH	Variable, 10–12
		O ∥ −C−N <mark>H</mark> 2	Variable, 5–8
			10

Section 14.3, 14.4, 14.6, 14.7, 14.15 most destrielded diastereo Topic one H C. Н HIN. Br aka `C. H Н $\mathbb{H}^{\mathcal{C}}$. H H the Br tance to Br es R liasterestopic 00/0 Br B rent resonan an a man an a more complicated ther 4 8 5 11 10 9 7 6 4 O. ppm HSP-02-075

https://sdbs.db.aist.go.jp/sdbs/cgi-bin/landingpage?sdbsno=500

Check CH2's for diastereotopicity

of peaks ill deshield you! 4 CH3 cd? ہ م C Ke CH3 Łн CH3 4 H3<< O. a Kz 6 loral symmetry Br CI

Number of different types of H atoms

Chemical environments of the H atoms

this mean # 61. relater to are area 5.0 2.0 1.0 Г 10 4.0 3.0 9.0 8.0 7.0 6.0 ppm

Number of different types of H atoms

of signals

Chemical environments of the H atoms

to the left.... near e withdown

How many of each type of H atom

From the integration

| + | + (. T + 1.5)

Integration

1 find lowest whole number ratio

2 count up number of H's and compare to formula If the number are the same then the area represents the number of H's giving rise to the peak

#H's in formula / # H's in the total area to find the factor to multiply the areas by

No neighbors... no one to couple with = singlet

One neighbor... 1 H to couple with = doublet

2 neighbors... 2 H's to couple with = triplet

3 neighbors... 3 H's to couple with = Quartet

N neighbors gives rise to an n+1 signal

Determine the multiplicity for the peak on the following molecules

Number of different types of H atoms

Chemical environments of the H atoms

How many of each type of H atom

How many H atoms neighbor each different type of H atom