(16) Today

Next Class (17)
4.4 Uses of Character Tables
(18) Second Class from Today
5.2 Homonuclear Diatomic Molecules
5.3 Heteronuclear Diatomic Molecules
5.1 Formation of Molecular Orbitals
5.2 Homonuclear Diatomic Molecules

Third Class from Today (19)
5.3 Heteronuclear Diatomic Molecules
5.4 Polyatomic Molecules

Please rework test 1 and hand in on Monday, Oct 23

Carbonyl Stretching Bands in Metal Compounds: Find Rotational Axes and
Tip: look along bands
look along. line the bisects bonds between identical atoms

(1) L_{2} an line bisecting $0<-m-c \circ$ angle? yep
$L \wedge_{M}{ }^{c o}$ highest n is assigned os the principal axis + also as the z

mirror plane contains prineripol axis so is not $a \delta_{h}$

n is principal axis

Representation
y $a+b$ comes out of the screen

E: do they change their position? no do they change their direction? no unchanged? yes 1 for each C_{2} : they change their position 0 for each $\sigma_{v}(x z)$: they are unchange 1 for each $\sigma_{(y z): ~ t h e y ~ c h a n g e ~ t h e i r ~ p o s i t i o n ~ o ~ f o r ~ e a c h ~}$ plane of the

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz
Γ	2	0	2	0		
Γ						

Carbonyl Stretching Bands in Metal Compounds: Determine Irreducible
Representations that Combine to Form Reducible Representation

Carbonyl Stretching Bands in Metal Compounds: Analyze Results
how many IR stretching bands
 should we zee?
A_{1} is a stretching made that moves the atoms an Z axis. Thus, dipole changes... IR active
B, movement on x - yes IR active

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz
Γ	2	0	2	0		

2 co stretching
bands for $C_{2 v}$ square planar molecules with $\mathrm{Cls} \mathrm{CO}_{3}$
$\Gamma \quad=\quad \mathrm{A}_{1} \quad+\quad \mathrm{B}_{1}$

Carbonyl Stretching Bands in Metal Compounds (now the other one)

Find Rotational Axes and Assign x, y, and z Axes

Find Point Group

Determine Reducible Representation

Determine Irreducible Representations that Combine to Form Reducible Representation

Analyze Results

Carbonyl Stretching Bands in Metal Compounds (axes)
Section 4.4

1 Find 3

no movement of dipole on x, y, or z so not IR active

