PHYS 0109

```
Name_
```

To get the most out of this assignment, you should complete the assignment using only a calculator and the periodic table (not the list of elements) in the front of your book. However, you <u>can</u> use your book and your notes if you wish.

You cannot work on this assignment with a friend.

A couple of constants:

 N_A =6.022 x 10²³ mol⁻¹ 0 °C = 273.15 K for H₂O at 20° d = 0.99823 g/cm³

1. (2 pts. each) Provide names for the following compounds.

a. CuCl ₂	copper(II) chloride	b. $NaNO_2$	sodium nitrite
c. NH ₄ OH	ammonium hydroxide	d. P_2O_5	diphosphorous pentoxide

- 2. (2 pts. each) Provide formulas for the following compounds
- a. cobalt(III) sulfate $Co_2(SO_4)_3$ b. dinitrogen tetroxide N_2O_4 c. potassium fluoride KF d. chloric acid HClO₃
- 3. (10 pts.) Determine the number of bromine atoms in 10.5 mL of bromoform (CBr₃H). The density of bromoform is 2.8899 g/mL.

 $\frac{10.5 \text{ mL CHBr}_3}{1 \text{ mL CBr}_3 \text{ H}} \times \frac{2.8899 \text{ g CBrr}_3 \text{H}}{1 \text{ mL CBr}_3 \text{H}} \times \frac{1 \text{ mol CBr}_3 \text{H}}{252.73 \text{ g CBr}_3 \text{H}} \times \frac{3 \text{ mol Br}}{1 \text{ mole CBr}_3 \text{H}} \times \frac{6.022 \times 10^{23} \text{ atoms Br}}{1 \text{ mol Br}} =$

 $= 2.1690 \times 10^{23}$

= 2.17 x 10²³ atoms

4. (10 pts.) Determine the mass of fluorine required to make UF_6 from 3.977 g of uranium.

$$3.977 \text{ g U} = 1.90451699582824$$

$$x = \frac{1 \text{ mol U}}{238.029 \text{ g U}} = \frac{6 \text{ mol F}}{1 \text{ mol U}} = \frac{1.90451699582824}{1 \text{ mol F}} = 1.905 \text{ g F}$$

5. (12 pts) At 20 °C, 27.0852 g of a metal are added to student's picnometer. An additional 24.4487 g of water are required to completely fill the picnometer. In the absence of any added metal, the student's picnometer holds 26.4452 g of water.

a. Determine the volume of the picnometer.

$$26.4452 \text{ g } \text{H}_2\text{O} \qquad \text{x} \quad \frac{1 \text{ mL } \text{H}_2\text{O}}{0.99823 \text{ g } \text{H}_2\text{O}} = 26.49209 \text{ mL } \text{H}_2\text{O}$$
$$= 26.492 \text{ mL } \text{H}_2\text{O}$$

b. Determine the volume of the metal that was placed in the picnometer.

vol metal = vol picnometer - vol of water added to metal

vol H₂O added to metal = 24.4487 g H₂O x $\frac{1 \text{ mL H}_2\text{O}}{0.99823 \text{ g H}_2\text{O}}$ = 24.49205 mL H₂O = 24.49205 mL H₂O vol metal = 26.49209 mL - 24.49205 mL vol metal = 2.000 mL

c. Determine the density of the metal that was placed in the picnometer.

d_{metal} = 27.0852 g/2.000 mL d_{metal} = 13.54 g/mL

6. (10) Determine the mass of a xenon atom in grams.

1 Xe atom x $\frac{1 \text{ mol Xe atoms}}{6.022 \text{ x } 10^{23} \text{ Xe atoms}}$ x $\frac{131.29 \text{ g Xe}}{1 \text{ mol Xe atoms}}$ = 2.180 x 10⁻²² g

7. a. (5 pts) List the number of neutrons, protons, and electrons in a neutral carbon-10 atom.

b. (5 pts) List the number of neutrons, protons, and electrons in a potassium-39 ion.

8. (10 pts) Rutherford's alpha particle experiment (he shot alpha particles at thin metal foils) revealed what about the structure of the atom? (This answer only requires one sentence.)

The experiment revealed that an atom is mostly empty space, and that the mass of the atom is concentrated in the nucleus.