\qquad

Quiz 3

1. a. (10 pts) Determine the amount of energy released when 2700 g of gasoline $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$, approximately 1 gallon, is burned.

$$
\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})+12.5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+9 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H} \approx-1012 \mathrm{~kJ} / \mathrm{mol}
$$

b. (10 pts.) Determine the mass of CO_{2} released during the reaction.
2. (10 pts.) Determine the mass of CO_{2} produced when enough CH_{4} is burned to release the same amount of energy as released in part 1.a.

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}=-802.3 \mathrm{~kJ} / \mathrm{mol}
$$

3. (10 pts .) Compare the two fuels. When the same amount of energy is released by each reaction, which fuel produces more CO_{2} ? Explain.
4. (10 pts .) List three other things you might consider in addition to the amount of CO_{2} a fuel produces when choosing a fuel for a vehicle that you are producing.
