\qquad

1. When metals like sodium (symbol $=\mathrm{Na}$) and magnesium (Mg) react, they tend to a. (4 pts.) gain or lose electrons?
2. \qquad
3. \qquad
b. (4 pts.) form ionic or molecular compounds with elements like chlorine (Cl)?
4. When non-metals like sulfur (S) and iodine (I) react, they tend to a. (4 pts.) gain or lose electrons?
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad
11. (2 pts. each) If the following atoms were to become an ions, their charges would likely be
12. \qquad what?
a. K
b. F
c. O
d. N
e. Al
f. Ca
13. \qquad
14. \qquad
15. \qquad
16. \qquad
17. (2 pts. each) If the following atoms filled their valence shells by forming covalent bonds with other atoms, they would like form how many covalent bonds?
a. C
b. Cl
c. S
d. H
e. Si
f. P
18. \qquad
19. \qquad
20. \qquad
21. \qquad
22. (4 pts. each) Predict the formulae for ionic compounds made from the following elements.
a. Li and F
b. Al and O
c. Na and P
d. Be and S
23. (8 pts.) When ionic compounds form what is it that keeps the ions together?
24. (8 pts .) When two hydrogen atoms come together, they form a covalent bond. The bond can be modeled using the diagram below.

Explain why the two hydrogen atoms stay together as an H_{2} molecule.
8. Draw Lewis structures for the following atoms or ions.

a. O	b. Br	c. I
d. K	e. N	f. S^{-}

H	Electronegativities of Selected Elements						He
$\begin{gathered} \hline \mathrm{Li} \\ 1.0 \end{gathered}$	$\begin{aligned} & \hline \mathrm{Be} \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & 2 \end{aligned}$	$\begin{aligned} & \hline C \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N} \\ & 3.0 \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline F \\ & 4.0 \end{aligned}$	Ne
$\begin{aligned} & \mathrm{Na} \\ & 0.9 \end{aligned}$	$\begin{gathered} \mathrm{Mg} \\ 1.2 \end{gathered}$	$\begin{aligned} & \mathrm{Al} \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Si} \\ & 1.8 \end{aligned}$	$\begin{aligned} & \hline P \\ & 2.1 \end{aligned}$	$\begin{aligned} & \hline S \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{Cl} \\ & 3.0 \end{aligned}$	Ar
						$\begin{aligned} & \hline \mathrm{Br} \\ & 2.8 \end{aligned}$	Kr

9. a. Classify the following covalent bonds as polar or nonpolar.
b. For the polar bonds indicate which end is positive and which is negative (use δ^{+}and δ^{-}).

i.	H—O	ii.	$\mathrm{N}-\mathrm{Cl}$	ii.
iv.	$\mathrm{N}-\mathrm{H}$	v.	$\mathrm{Be}-\mathrm{F}$	

10. (6 pts. each) Draw Lewis structures for the following molecules.

a. SCS (C is the central element)	b.CHCl_{3} (C is the central element)	c. N_{2}

Three common molecular geometries

linear	trigonal planar	tetrahedral
$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$:		

11. a. (3 pts. each) Use the following Lewis structures and VSEPR Theory, to predict the shapes of the following molecules. (Draw the shapes)
b. (3 pts. each) Determine which of the following molecules is polar, and use the δ^{+}and δ^{-} nomenclature to show the positive and negative sides of the polar molecules.

a.	b.	c.

12. (6 pts.) Rank the following forces of attraction in order of increasing strength.
dipole-dipole interactions, covalent bonds, hydrogen bonds, ionic bonds, London dispersion forces
13. a. (4 pts.) Which force is responsible for the base pairing between DNA molecules, which is pictured below?
b. (4 pts.) Circle the area where the interaction is occurring.

deoxyadenosine monophosphate
deoxythymidine monophophate
14. (8 pts.) Briefly explain how the yellow and blue dyes in a green mark are separated when performing paper chromatography.
15. (2 pts. each) For which of the following would hydrogen bonding be an important intermolecular force (Lewis structures are provided).

a.	$H-\ddot{S}-H$			c.	
d.		e.		f.	

16. (6 pts. each) Balance the following chemical equations
a.
$\mathrm{BH}_{3}+\mathrm{C}_{3} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{9} \mathrm{H}_{21} \mathrm{~B}$
b.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow
$$

$$
\mathrm{PbSO}_{4}(\mathrm{~s})+\quad \mathrm{NaNO}_{3}(\mathrm{aq})
$$

17. (4 pts. each) Determine the mass of one mole of the following chemicals.

a. $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$	b.	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

18. (10 pts .) If 0.945 g of AgCl is formed during the following reaction, how much LiCl must have been present initially?

$$
\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{LiCl}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{~s})+\mathrm{LiNO}_{3}(\mathrm{aq})
$$

