Name PHYS 0203 (Organic)		Test 1 Fall 2005
 (6 pts. ea.) Draw Lewis structures for th a. NO₂⁻ (include formal charges) 	e following molecules b. CH ₃ C(OH)HCH ₃	1
		2
:0 N= <u>0</u>	нсн	3
		4
c. $CH_3CH_2CH_3$	d. $H_2CCHCH_2CH_3$	5
н н н 	н н н 	6
н—с—с—с—н	с <u>—</u> с—с—с—н 	7
		8
2. (4 pts. ea.) Determine (a) the symmetry	of the following orbitals (σ or π) and (b)	9
i.	ii.	
σ bonding		
iii.	iv. σ antibonding	
πbonding	o university	

3. (12 pts.) Determine the hybridization of each of the circled atoms.

4. a. (8 pts.) Determine the IUPAC name for each of the following molecules

b. (8 pts.) Determine whether the circled C atoms are 1°, 2°, or 3°.

5. (8 pts.) Can the dimethylcyclohexane on the left be converted to the dimethylcyclohexane on the right without breaking any bonds?

6. (6 pts.) Draw a Newman projection down the C_3 to C_4 bond of the 3,4-dimethylhexane drawn below.

7. (8 pts.) Order the following disubstituted cyclohexanes in order of increasing stability.

- 8. a. (3 pts. ea.) Draw three dimensional representations (wedge and dash structures) for the following molecules, (b. 2 pts. ea.) indicate the presence of polar bonds using the δ^+ and δ^- notation, and (c. 2 pts. ea.) determine which, if any, of the molecules is polar. Kekulé structures are provided.
- a. 0—S=0

9. (10 pts.) Draw Newman projections for the lowest and highest energy structures of 1,1dichloropropane.

lowest

highest