| Name<br>CHEM 0201 (Organic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test 1 (10/5)<br>Fall 2011 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1. (8 pts each) Draw Lewis structures for the following condensed structures.<br>a. $CH_3CHCO$ b. $CH_3C(O)NH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                          |
| 2 (10 sta) Determine the hybridization of the similar standing the following male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                          |
| <ul> <li>2. (10 pts.) Determine the hybridization of the circled atoms in the following mole Lewis, Kekulé, and condensed structures are provided.</li> <li>a. b. C. H H</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                          |
| $( \begin{array}{c} 0 \neq C \neq N \\ H \end{array} $ $( \begin{array}{c} CH_2 \neq CH \neq NH_2 \end{array} )$ $H \neq Si \xrightarrow{C} H = H \\ H \\$ | C €N: 7                    |
| O C Si C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                          |
| C N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                          |

3. (10 pts.) A wedge and dashed three-dimensional Kekulé structure of propene is drawn below. Using the valence bond model, describe the double. Remember to name the orbitals (hybrid or atomic orbitals) that are being used, and remember to specify the symmetry of the bonds that form  $(\sigma \text{ or } \pi)$  from the interaction of the hybrid or atomic orbitals.



- 4. An incomplete MO diagram for the molecule C<sub>2</sub> is drawn below.
- a. (2 pts.) Label the atomic orbitals.
- b. (2 pts.) Label the molecular orbitals.
- c. (2 pts.) Populate the atomic orbitals with the appropriate number of electrons.
- d. (2 pts.) Populate the molecular orbitals with the appropriate number of electrons.
- e. (2 pts.) Determine the bond order for C<sub>2</sub>.
- f. (4 pts.) The  $C_2$  molecule has been observed, but it has never been isolated. Using MO theory, explain why the  $C_2^{2-}$  ion is more easily isolated (usually as  $CaC_2$ ).



5. a. (4 pts.) For each of the following molecules, identify the acidic proton.

b. (8 pts.) For each pair of molecules below, determine which is the stronger acid.



6.(9 pts.) Using wedge (-----) and dashed (------) bonds where appropriate, draw three-dimensional representations of the following molecules. Kekulé and condensed structures are provided.



7. (10 pts.) Explain why the top molecule is the stronger base.



8. (10 pts.) Using ideas like effective nuclear charge and valance shell, explain why fluorine is the most electronegative element on the periodic table.

9. (6 pts.) An antibonding orbital is pictured below. Describe the traits that makes this orbital high in energy.

