$\qquad$

1. (16 pts.) Draw Lewis structures for the following condensed structures.
$\mathrm{CH}_{3} \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}$
$\mathrm{CH}(\mathrm{O}) \mathrm{CH}_{3}$
2. $\qquad$
3. $\qquad$
4. $\qquad$
5. $\qquad$
6. $\qquad$
7. (10 pts.) Using wedge (-) and dashed (...inI) bonds where appropriate, create three-
8. $\qquad$ dimensional Kekulé structures for the following Kekulé structures.


9. $\qquad$
10. $\qquad$
11. $\qquad$
12. $\qquad$
13. (12 pts.) Label ( $\sigma, \Pi$, bonding, and/or antibonding) the following molecular orbitals for a molecule of $\mathrm{F}_{2}$. The two green spheres, which are connected by a green cylinder, represent the nuclei of the F atoms.

14. ( 10 pts ) Determine the hybridization of the circled atoms in the structures drawn below. Lewis, Kekulé, and condensed structures have been provided.
a.

b.

c.

$\mathrm{C}(1) \quad \mathrm{C}(2)$ $\qquad$
$\qquad$

$\mathrm{C}(1) \quad \mathrm{C}(2)$
C(1) $\qquad$
C(2) $\qquad$
0 $\qquad$
0 $\qquad$
N(1) $\qquad$
$\mathrm{N}(2)$ $\qquad$
15. a. (4 pts.) Determine the hybridization of the circled atoms in the following skeletal structure. b. (4 pts.) Determine the degree of substitution ( $1,2^{\circ}, 3^{\circ}$, or $4^{\circ}$ ) of the circled C atoms.


degree of substitution

$$
C(1) \quad C(2)
$$

C(3) $\qquad$
$\qquad$
6. (12 pts.) In General Chemistry we learned that atoms with a steric number of three (like the C atoms below) orient their bonds so that the bonds point towards the corners of a triangle. Both representations drawn below have trigonal planar C atoms, but we know from valance bond theory that only one of them is correct.

co-planar triangles

or



perpendicular triangles

Identify the correct structure and using valence bond theory explain your choice. In your explanation remember to identify the orbitals that are being used to form the C to C bonds.
7. (10 pts.) Based on the provided $\mathrm{pK}_{\mathrm{a}}$ values rank the following molecules in order of decreasing acidity; that is, label the strongest acid with a " 1 ", the next strongest with a " 2 ", and so on.
$\mathrm{H}_{2} \mathrm{SO}_{4}$
$\left(\mathrm{pK}_{\mathrm{a}} \cong-3\right)$
$\mathrm{CH}_{3} \mathrm{CCH}$
$\left(\mathrm{pK}_{\mathrm{a}}=25\right)$
$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
$(\mathrm{pK}=4.75)$
$\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{OH}$
$\left(\mathrm{pK}_{\mathrm{a}}=8.95\right)$

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH} \\
\left(\mathrm{pK}_{\mathrm{a}}=10.0\right)
\end{gathered}
$$

8. (12 pts.) For each of the following structures, circle the H that would most easily be removed by a base.




9. (10 pts.) In the following reaction label the molecule that acts as a Brønsted-Lowry base and molecule that acts as a Brønsted-Lowry acid.

10. Ethyne is a stronger Brønsted-Lowry acid than ethane. Determine the hybridization of the C atoms on both molecules and explain why ethyne is the stronger acid.
$\mathrm{HC} \equiv \mathrm{CH}$
ethyne
$\mathrm{CH}_{3}-\mathrm{CH}_{3}$
ethane

