Name CHEM 0201 (Organic)		Test 1 (10/8) Fall 2021
1. (16 pts.) Draw Lewis structures for the following the f	lowing condensed structures.	1
$CH_3OCH(CH_3)_2$	$CH(O)CH_3$	1
		2
		3
		4
		5
2. (10 pts.) Using wedge ((IIII) bonds where appropriate, create th	6
H H H H	$H = \begin{bmatrix} H & H \\ H & -C \\ H & -C \\ H & H \end{bmatrix}$	7
HH H		8
Ĥ		9
		10

3. (12 pts.) Label (σ , π , bonding, and/or antibonding) the following molecular orbitals for a molecule of F₂. The two green spheres, which are connected by a green cylinder, represent the nuclei of the F atoms.

4. (10 pts) Determine the hybridization of the circled atoms in the structures drawn below. Lewis, Kekulé, and condensed structures have been provided.

5. a. (4 pts.) Determine the hybridization of the circled atoms in the following skeletal structure.
b. (4 pts.) Determine the degree of substitution (1, 2°, 3°, or 4°) of the circled C atoms.

6. (12 pts.) In General Chemistry we learned that atoms with a steric number of three (like the C atoms below) orient their bonds so that the bonds point towards the corners of a triangle. Both representations drawn below have trigonal planar C atoms, but we know from valance bond theory that only one of them is correct.

Identify the correct structure and using valence bond theory explain your choice. In your explanation remember to identify the orbitals that are being used to form the C to C bonds.

7. (10 pts.) Based on the provided pK_a values rank the following molecules in order of decreasing acidity; that is, label the strongest acid with a "1", the next strongest with a "2", and so on.

 H_2SO_4 CH_3CCH CH_3CO_2H CIC_6H_4OH C_6H_5OH $(pK_a = -3)$ $(pK_a = 25)$ $(pK_a = 4.75)$ $(pK_a = 8.95)$ $(pK_a = 10.0)$

8. (12 pts.) For each of the following structures, circle the H that would most easily be removed by a base.

9. (10 pts.) In the following reaction label the molecule that acts as a Brønsted-Lowry base and molecule that acts as a Brønsted-Lowry acid.

10. Ethyne is a stronger Brønsted-Lowry acid than ethane. Determine the hybridization of the C atoms on both molecules and explain why ethyne is the stronger acid.

нс≡сн

ethyne

 $CH_3 - CH_3$

ethane

·								
2 He		18 Ar	39.948 36	Ŗ	54 Xe	⁸⁶ Rn	118	
c			35.453 35	BL	53	85 At		Lu Z
c	وموم 15 مومو	16 S	32.065 34	Se	52 Te	⁸⁴ PO	116	م ۲
	Z	15	30.974 33	As	Sb	Bi 🖁		T T
<u>u</u>	O	¹⁴ Si	28.086 32	Ge	Sn Sn	⁸² Pb	114	⁸ П
L	ں 10 811	AI	26.981 31	Ga	49 In	⁸¹		Ho Ho
			30	Zn	48 Cd	BU Hg	112	D D
			29	Cu	47 Ag	⁷⁹ Au	111	B Tb
			28	ÏŻ	⁴⁶ Pd	Pt	110	Gd ⁶
			27	Co	45 Rh	<i></i> ۲	109 Mt	E E
			26	Ге	⁴⁴ Ru	76 Os	¹⁰⁸ HS	Sm Sm
			25	ЧИ	TC	75 Re	107 Bh	Pa ^e
			24	с О	⁴² Mo	74 V	¹⁰⁶ Sg	کم گو
			23	>	⁴¹ Nb	Ta	105 Db	ع ۲
			22	F	⁴⁰ Zr	72 Hf	104 Rf	မ္း
_			21	Sc	³⁹	57 La	AC	
	• Be	¹² Mg	24.305 20	Ca	°s Sr	Ba	Ba	
1.0079	ر ه ۱۹۲	¹¹ Na	22.989 19	×	CS CS	Bb	⁸⁷ Fr	

⁷¹	103 Lr
م ۲p	102 NO
50 Tm	I ⁰¹ Md
^в д	E E E
Ho	в В В
D D	<u>د</u>
es Tb	BK BK
Gd [£]	C C B ®
۳ Eu	⁹⁵ Am
⁶² Sm	⁹⁴ Pu
Pm	⁹³ Np
⁰⁹	92 U
Pr	Pa
Ce Ce	[%]