\qquad

1. The two most common isotopes of carbon are ${ }^{12} \mathrm{C}$ and ${ }^{13} \mathrm{C}$.
a. (4 pts.) Subatomic particle wise, how are atoms of ${ }^{12} \mathrm{C}$ and ${ }^{13} \mathrm{C}$ similar?
c. (4 pts.) Would the atoms have similar or different chemical reactivity?
d. (2 pts.) Which isotope would react more slowly?
2. Fluorine is more electronegative than carbon.
a. (6 pts.) How does this affect the distribution of electrons in a C to F bond?
b. (6 pts.) Explain why is fluorine more electronegative than carbon. Remember to base
the explanation on the makeup of the atom and not simply its position on the
periodic table.
b. (6 pts.) Explain why is fluorine more electronegative than carbon. Remember to base
the explanation on the makeup of the atom and not simply its position on the
periodic table.
b. (6 pts.) Explain why is fluorine more electronegative than carbon. Remember to base
the explanation on the makeup of the atom and not simply its position on the
periodic table.
b. (4 pts.) Subatomic particle wise, how are atoms of ${ }^{12} \mathrm{C}$ and ${ }^{13} \mathrm{C}$ different?
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. a. (6 pts.) What is the ground state electron configuration for an oxygen atom (using the noble gas shorthand is acceptable).
b. (2 pts.) In its ground state, how many unpaired electrons does an oxygen atom have?
11. (8 pts.) The diagram below is a graphical representation of an antibonding molecular orbital. What feature (or features) of the orbital accounts for the high energy of the electrons placed in this orbital and why does this make the electrons higher in energy.
12. (16 pts.) Draw Lewis structures for the following condensed structures.

$\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{OH}$

$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{SH}$
6. (8 pts) Determine the hybridization of the circled atoms in the structures drawn below. Lewis Kekulé, and condensed structures have been provided.
a.

b.

c.

$\mathrm{N} \quad \mathrm{C}$ \qquad
\qquad C \qquad
O
C(1) \qquad
N \qquad
O \qquad
C(2) \qquad
7. a. (5 pts.) Determine the hybridization of the circled atoms in the following skeletal structure.

8. (8 pts .) Use valence bond theory to briefly describe what types of bonds are involved (σ or п) in single and double bonds and briefly explain why rotation around a carbon-carbon double bond is not possible at room temperature.
9. a. (6 pts.) Brønsted-Lowry acids are proton donors or acceptors?
b. (6 pts.) Lewis acids are lone-pair electron donors or acceptors?
10. Rank (assign first place to the most acidic and fourth place to the least acidic) the following molecules in order of increasing acidity; pK_{a} values are provided. Remember, $\mathrm{pK}_{\mathrm{a}}=-\log \left[\mathrm{K}_{\mathrm{a}}\right]$.

$$
\begin{array}{cccc}
\mathrm{CF}_{3}-\mathrm{CH}_{2}-\mathrm{OH} & \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH} & \mathrm{CHCl}_{2}-\mathrm{CH}_{2}-\mathrm{OH} & \mathrm{CH}_{2} \mathrm{~F}-\mathrm{CH}_{2}-\mathrm{OH} \\
\mathrm{pK}_{\mathrm{a}}=12.46 & \mathrm{pK}_{\mathrm{a}}=16.0 & \mathrm{pK}_{\mathrm{a}}=12.89 & \mathrm{pK}_{\mathrm{a}}=14.42
\end{array}
$$

11. Four structures are drawn below. For each structure, circle the H (or H's) that would be most easily removed by a base.

