\qquad

1. (24 pts.) Provide IUPAC names for the following structures.
a.

$$
\text { 2-bromo }-4,4-\text { dimethy hexane }
$$

c.

2-methyl-1-pentene
E-4-chloro-2-pentene

3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
b. (6 pts.) For the molecules drawn above, determine which is the lower energy conformation, and explain the basis for your choice.
lower energy. In the staggend conformation not bumping into each others so the bond angles are closer to ideal. An the eclipsed version the group are bumping causing $e-e^{-}$ Repulsion ard stained lond angles.
3. (12 pts.) Determine the degree of substitution $\left(1^{\circ}, 2^{\circ}, 3^{\circ}, 4^{\circ}\right)$ for the circled C atoms on the structures drawn below.

4. The reaction of trimethylamine with water is drawn below.
done on test I fall

$$
\mathrm{H}-\mathrm{O}^{\Theta}
$$

a. (4 pts.) Identify the molecule that is acting as an acid.

$$
\mathrm{H}_{2} \mathrm{O}
$$

b. (4 pts.) Identify the molecule that is acting as a base.

$$
\mathrm{NH}_{3}
$$

c. (4 pts.) Explain why trimethylamine is able to play the role it does.
NH_{3} has a lone pair of $e^{-1} s$ in an $s p^{3}$ hybrid orbital, and these $e^{-1} s$ will be attractive $T_{0} H^{+}$
5. (10 pts.) Use valence bond theorformain why alkenes pupensidered nucleophilic. In your
 nucleophilic bonds in alkenes.

The double bond of an alkene is formed from a $\sigma+$ a π lond. The σ bond is made from 2 overlapping $1 p^{2}$ orbitals. These $e^{-1} s$ are directly between the nucleic and are not particularly reactive. OT m the other hand, the π bonds made from two overlapping, parallel, whybldieged p orbitals. Sine p orbitals stick out away from the nucleic these e^{-i} will be attraction to electiophile.

 to be the stronger acid

7. (18 pts) Prediet the produch (s) 铬 thefollowing referions If mixture of major and minor productodarexpected, identiey the majorlsrodictel

 reaction.

