1.(6 pts. ea.) Provide IUPAC names for the following structures.
a.

b.

c.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. (10 pts.) Draw a skeletal structure for 3-methyl-1-pentanol.
10. \qquad
11. (10 pts .) The dipole moment of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (methylene chloride) is 1.6 D and the dipole moment of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$ (diethyl ether) is 1.15 D . Thus, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is more polar than diethyl ether, which is reflected in their boiling points. On the other hand, diethyl ether is more soluble in water than $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Explain why diethyl ether is more soluble in water than $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
12. (12 pts.) The reactivity of carbon atoms often depends on their degree of substitution. For the following structures determine the degree of substitution $\left(1^{\circ}, 2^{\circ}, 3^{\circ}\right.$, or 4°) for the indicated C atoms.

a. $\quad i$. \qquad ii. \qquad b. i. \qquad ii. \qquad
c. i. \qquad ii.
13. a. (12 pts.) Newman projections allow the viewer to visualize how groups attached to adjacent C atoms interact with each other. Draw the Newman projections along the C_{2} to C_{3} bond of the following rotamers of (R)-2-methyl-3-pentanol.

b. (6 pts.) Which rotamer is lower in energy?
14. (12 pts.) Identify the function group on each of the following structures; be as specific as possible.

15. The single bonds in cyclic alkanes can partially rotate, and when all of the bonds in the ring partially rotate a ring flip results. (a. $6 \mathbf{p t s}$.) For the following pairs of cyclohexane molecules determine whether the two structures represent the same but ring-flipped molecules and (b. $\mathbf{6}$ pts.) for each pair determine which would be the lower energy structure.

16. (12 pts.) Determine the stereochemical configurations (Z or E) for the following alkenes.

17. (12 pts.) Determine the stereochemical configuration (R or S) of the chiral C atoms in the following structures.

18. (12 pts.) Place a star next to the chirality centers in the following structures and circle the chiral molecules.

