\qquad

1. (12 pts.) Using valence bond theory (hybridization) explain why alkenes are nucleophilic.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. (2 pts. ea.) The questions below refer to the reaction coordinate diagram draw to the right.
a. Label the reactants with an "a".
b. Label the products with a " b ".
c. Label the intermediates with a "c".
d. Label the transition state(s) with a "d".
e. Does this reaction absorb or release energy?
f. Would this reaction have a positive or negative $\Delta \mathrm{G}$?

Reaction Coordinate
g. Does the equilibrium favor the reactants or products.
3. (16 pts.) Determine whether the following are nucleophiles, electrophiles, or neither.

H^{+}	$\mathrm{CH}_{3} \mathrm{CHCH}_{2}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
HNO_{3}	Br^{-}	

4. (12 pts.) Draw a mechanism for the reaction shown below. Include electron movement arrows with the mechanism.

5. a. (6 pts.) Draw a skeletal structure of a molecule that has a 3° carbocation. (b. 6 pts.) Briefly, explain why a 3° carbocation is more stable than a 2° carbocation.
6. (6 pts.) (a.) Do Br_{2} and Cl_{2} initiated electrophilic addition reactions occur in a syn, an anti, or both a syn and anti fashion? (b. 6 pts.) Draw the an example of the expected intermediate in the reaction and explain your choice.
7. (12 pts.) In the electrophilic addition reaction below, the HCl and 2 -methyl-1-pentene are dissolved in a mixture of THF and methanol. Explain why 2 -methoxy-2-methylpentane will be produced.

8. (8 pts. ea.) Predict the major organic products for the following reactions. Remember to indicate the stereochemistry of the products using wedge (\sim), dashed ($\cdots \cdots \cdots \cdots 1$), or squiggly ($\sim \sim \sim$) bonds where appropriate (If you don't know/remember what squiggly bonds are, just use the wedge and dashed bonds where appropriate).
a.

b.

c.

