- 1. Alkenes are considered nucleophilic. (a. 4 pts.) Are nucleophilic molecules electron rich or electron deficient?
- 1. _____
- 2. _____
- b. (6 pts.) List two facts about alkenes that would help explain why they are nucleophilic (rewriting or paraphrasing your response to part a. is not sufficient).
- 3. _____
- 4. _____
- 5. _____
- 2. (2 pts. ea.) The questions below refer to the reaction coordinate diagram draw to the right.

G

rxn coordinate

6. _____

a. Label the reactant(s) with an "a".

7. _____

b. Label the product(s) with a "b".

8

c. Label the intermediate(s) with a "c".

d. Label the transition state(s) with a "d".

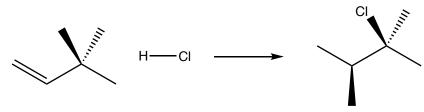
9. _____

e. Does this reaction absorb or release energy?

10

f. Would this reaction have a positive or negative $\Delta G?$

10. ____


g. Does the equilibrium favor the reactants or products.

11. _____

- h. How many steps would the mechanism of this reaction have?
- 3. (16 pts.) Determine whether the following can react as nucleophiles, electrophiles, or neither.

ОН	CH₂CHCH₂CH₃	HOCH₃	H+
CI-	H ₂ SO ₄	CH ₃ CH ₂ CH ₂ CH(CH ₃) ₂	

4. (12 pts.) Draw a mechanism for the reaction shown below. Include electron movement arrows with the mechanism.

5. a. (6 pts.) A secondary carbocation is drawn below. Draw a resonance contributor that shows how a neighboring σ bond stabilizes the carbocation through hyperconjugation. (**b. 6 pts.**) Briefly, explain why a 3° carbocation is more stable than a 2° carbocation.

6. (6 pts. each) Draw the structures that result based on the electron movement arrow that are shown.

b. Br—H

- 7. a. (3 pts.) Products of a borane electrophilic addition reaction are formed via syn addition, anti addition, or both?
 - b. (3 pts.) Products of a H⁺ initiated electrophilic addition reaction are formed via syn addition, anti addition, or both?
 - c. (3 pts.) Products of a Cl_2 or Br_2 initiated electrophilic addition reaction are formed via syn addition, anti addition, or both?
- (8 pts. ea.) Predict the major organic product(s) for the following reactions. Remember to indicate the stereochemistry of the product(s) using wedge (———), dashed (··········), or squiggly (•••••) bonds where appropriate, and to draw all stereoisomers that would be produced by the reaction. (If you don't know/remember what squiggly bonds are, just use the wedge and dashed bonds where appropriate).

8.
$$\frac{Br_2}{H_2O}$$

9.
$$\frac{\text{1. BH}_3}{\text{2. NaOH, HOOH, H}_2\text{O}}$$

10.
$$H_2SO_4$$

2	He	4.0026	10	Se	18.998 20.1797	18	A	39.948	36	궃		54	Xe	98	R	118	
			o	Щ	18.998	7	ರ	35.453	35	B	79.904	53	_	85	At		
			8	0	15.999	16	ഗ	30.974 32.065	34	Se		52	<u>H</u>	84	Ъо	116	
			_	Z	12.011 14.007 15.999	12	<u>α</u>		33	As		51	Su Sb	83	Ö		
			9	ပ	12.011	14	S	28.086	32	Ga Ge As		20	Su	82	Pb	114	
			2	m	10.811	13	4	26.981	31	Ga		49	므	81	F		
									30	Cu Zu		48	S	80	Hg	112	
									29	D C		47	Pd Ag	62	Au	#	
									28	Z		46	Pd	28	చ	110	
									27	ပ္ပ		45	Ru Rh	22	<u> </u>	109	Ĕ
									26	Бe		44	Bu	92	Os	108	S H
									25	Cr Mn Fe		43	ည	75	Re	107	Bh
									24	င်		42	Mo	74	>	106	b Sd
									23	>		41	N	73	Ta	105	op D
									22	F		40	Zr	72	ቿ	104	<u></u>
		ı							21	Sc		39	>	22	La	68	Ac
_			4	Be	9.012	12	M	24.305	20	Ca		38	Š	26	Ва	88	Ra
_	I	1.0079	က	=	6.941	1	Na	22.989	19	¥		37	Cs	55	Rb	87	亡

g B	Pm	Sm	⁶³ Eu	8 59 60 61 62 63 64 65 66 67 88 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu	es Tb	e Dy	9 H0	Er Er	E Tm	۰۶ ۲ b	Lu
ε S D	0,	⁹⁴ Ри	Am	93 94 95 96 97 98 99 100 101 102 103 Np Pu Am Cm Bk Cf Es Fm Md No Lr	97 BK	ي څ	Б В	160 FB	101 Md	102 NO	103 Lr
	\dashv										