Today

Sections 1.7-1.15 An Introduction to Valence Bond Theory

Sections 2.1 and 2.3 Acids and Bases Next Class

1

Sections 2.6 - 2.9 How structure affects acidity and basicity hybrid orbitals are used to form σ bonds and to hold lone-pair electrons

single bonds are always σ bonds

double and triple bonds are formed from σ bonds and π bonds

of σ bonds + pairs of lone-pair electrons = # of hybrid orbitals needed

count out the # of atomic orbitals need to make the hybrid orbitals starting with the 2s orbital (or 3s if appropriate)

name the hybrid orbitals spⁿ where n is the number of p orbitals used

The hybrid orbitals spontaneous $H \stackrel{i}{} \stackrel{i}{\phantom{$

https://www.westfield.ma.edu/PersonalPages/cmasi/organic/hybrid/hybrid.html

Identify atoms that use sp³ hybrid orbitals to form bonds and hold lone-pair electrons

https://www.westfield.ma.edu/PersonalPages/cmasi/organic/hybrid/hybrid2.html

Identify atoms that use sp hybrid orbitals to form bonds and hold lone-pair electrons

these orbitals overlap 50 e can be shaved

JSmol

Species

Some consequences of hybridization

5P 25% 5 75% P oc the et's in sp³ orbitals are highest In E 33%367% **r**5 3P E 02 $\frac{10}{50\%}$ this orbital is 50% 5 + 50%the e's in 3p orbitals are lowest in E

e⁻¹5 stuffed down between the nuclei $CH_2 = CH_2$ Auclei

Explain observations and make predictions based on the hybridization of an atom 5 as bitals get ets clover to nucleus, so et is lower in E Practice

Arrhenius, Brønsted-Lowry, and Lewis

 $K_a \,and \, pK_a$