Today Next Class

Sections 2.1, 2.3, 2.12 Acids and Bases

Sections 2.6 - 2.9 How structure affects acidity and basicity

Section 2.1, 2.3, 2.12 Arrhenius, Brønsted-Lowry, and Lewis HCl(g) + Cl (aq) + Cl (aq) Acrds are H+ donors HCl(9) + H2O(1) -> H3O(ag) + Cl(ag) Bases are OH donors Ht 3:0-1- H 0-H NaOH(5) H20 Na (aq) + OH (aq) NH3(9) + H2O(1) -> NH4(a9) + OH(a9) What did the NH3 do to form the OH-? The NH3 picked up (accepted) an H. Baze Acids are e pair acceptors + Bases are 10-donors AlC13(5) + 3 H26 -> Al(OH), + HC1(aq)

A1+3 1 - H - A1-0-H H (aq)

Ka and pKa Ka is an acid constation equilibrium constant Section 2.6

CH₃-2
$$O$$
 \Rightarrow CH_3-CO \Rightarrow O \rightarrow

Stabilizing the conjugate base

H-C-2 0-H conjugate base Section 2.6

HI- C- C

HO

HO

Note

Section 2.6

thing that formed when on Ht 15 removed

H - C - C H - C - C O - H

which conjugate

would be to make

Which is the acidic proton?

more stable...

isses to make

Same Shell More Positive Nucleus

the weaker base the conjugate base the conjugate base the stronger the

CH₄, 50 NH₃, ~36 H₂O, 15.6 HF, 3.18

weakest acid

N=2

Same

more positive nucleus strongert aud stabilizes

conjugate base

Four ways to stabilize the electrons

122

Section 2.6 – 2.9

Same Column Larger Valence Shell

(C

3,18

H-F

FB

+H^a

- 7

H - C1

a + H'

Q

H- Br

-

Br + H

- |

H-I

J & +. H

- (C

e -

HF, 3.18 HCl, -7

HBr, -9

HI, -10

Resonance

Inductive Effect

Greater s character

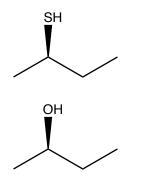
ter
$$0.01 \text{ M} \text{ HCI}$$
 $H^{\dagger} = 0.61$
 $H_{2}0 \Rightarrow H^{\dagger} + 0H^{\dagger} \qquad k_{13} = 16^{-14}$

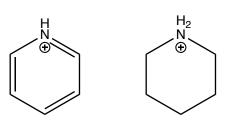
$$H_{2}0 \Rightarrow H^{\dagger} + 0H^{\dagger} \qquad k_{13} = 16^{-14}$$

$$H_{3} = 10^{-7}$$

$$H^{\dagger} = 10^{-7}$$

$$PH = -109 \left[10^{-7}\right]$$


$$PH = -1$$


$$PH = 7$$

50, 44, 25

Practice

