Today

Sections 4.1 and 4.2
Isomers and the stereoisomers of alkenes
Sections 4.3-4.8
Chirality

Sections 4.9-4.14
Optical activity and compounds with more than one center of chirality

cis and trans Stereoisomers in alkenes and rings
the are are different

conformations
of the same molecule

cis methyl groups

conformations of same molecule

trans relationship between methyl groups

also a
trans
relationship between methyl groups

Convert $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$ to a skeletal structure

Convert $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$ to a skeletal structure

cis and trans Stereoisomers in alkenes

CISt trans nomenclature only works when there a atom at both ends of the double band

First: One end at a time, assign priority to groups at each end of double bond
higher priority is given to the group with the higher atomic number for the atom directly bonded to the sp² carbon
in a tie, consider the atomic numbers of the elements attached to the element that is attached to the sp^{2} carbon (move one bond further out from the sp^{2} hybridized C atom)
if the element that is attached to the sp^{2} carbon has a doubly bonded or triply bonded atom attached to it the element is treated like there are two or three elements singly bonded to the element that is bonded to the sp^{2} carbon

$$
{ }^{2} H \text { us' } H
$$

when comparing isotopes, the mass number is used (D vs $\mathrm{H},{ }^{12} \mathrm{C}$ vs ${ }^{13} \mathrm{C}$)

Second: If the high priority groups at each end of the double bond are on the Kame Ride, the proper designation is \mathbf{Z}, if they are on opposite sides, then \mathbf{E}.

confirm ends of $d b$ are different Assigning the stereochemical designation tor alkenes

$$
\operatorname{CH}_{3}^{\prime} \text { is not different, }
$$

practice

2

Section 3.12

