Sections 4.9-4.14
Chirality Optical activity and compounds with more than one center of chirality

Rework test 1 by Oct 28. Answers questions that didn't receive full credit on a separate piece of paper. I do not need your test back

Chirality

Look down

What makes your feet chiral?
A chiral object has a non-superposable mirror image
An achiral object has a superposable mirror image

Superposable mean that when you superimpose the two objects everything lines up. dichloromethane us achiral

it doesn't have handedness associated with it. It's mirror image is superposable

What makes your feet chiral?
A chiral object has a non-superposable mirror image

Superposable mean that when you superimpose the two objects everything lines up.
ket-rght matror

A chiral object lacks an internal mirror plane*

$$
\begin{aligned}
& \text { cut the } \\
& \text { base ball } \\
& \text { bat in } \\
& \text { half lengthwise }
\end{aligned}
$$

*Technically it's an improper axis of rotation, but a mirror plane is an S_{1} and a center of inversion is an S_{2}

A chiral object lacks an internal mirror plane*
4 different groups
 attached to a single aton creates a
 chirality center
this is a mirror image this (left-right mirror) they are not superposable

D-glucose
$6 \notin$ per gram

L-glucose \$103 per gram

L-alanine

D-alanine

Practice Recognizing centers of chirality

$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$
CH_{3}

H
 $\left.\begin{array}{l}\mathrm{CHCH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3} \\ \mathrm{CH}_{3} \\ \mathrm{CH}_{3}\end{array}\right\} \begin{aligned} & \text { same } \\ & \mathrm{H} \quad \begin{array}{l}\text { only } 3 \\ \\ \\ \\ \\ \\ \text { disfient } \\ \text { groups }\end{array}\end{aligned}$

$\mathrm{OH}_{\mathrm{CHClCH}}^{3}$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$
H

Determining Configuration (R vs S) Assign priorities to groups connected to chirality center

Point lowest priority group away
Draw a circle from $\underline{1 s t}^{\text {st }}$ to $\underline{2}^{\text {nd }}$ to $\underline{3}$ rd priority groups
Clockwise circle is \mathbf{R} configuration
Counter Clockwise circle is \mathbf{S} configuration

Determining Configuration (R vs S)

1. Draw a tetrahedral C atom
2. Assign priorities to the groups
3. Place the lowest priority group so that it points away
4. Draw in priority groups 1 through 3 in the correct (clockwise or counterclockwise) orientation.

Drawing Chiral Molecules (How you really do it)

1. Draw the molecule
2. Assign priorities and check if the correct configuration is drawn
3. a. If correct, celebrate, you're done
4. b. If incorrect version is drawn, redraw molecule switching the positions of 2 (and only two) substituents.
R-2-chloropentane
(2S,3S)-2-bromo-3-chloropentane
