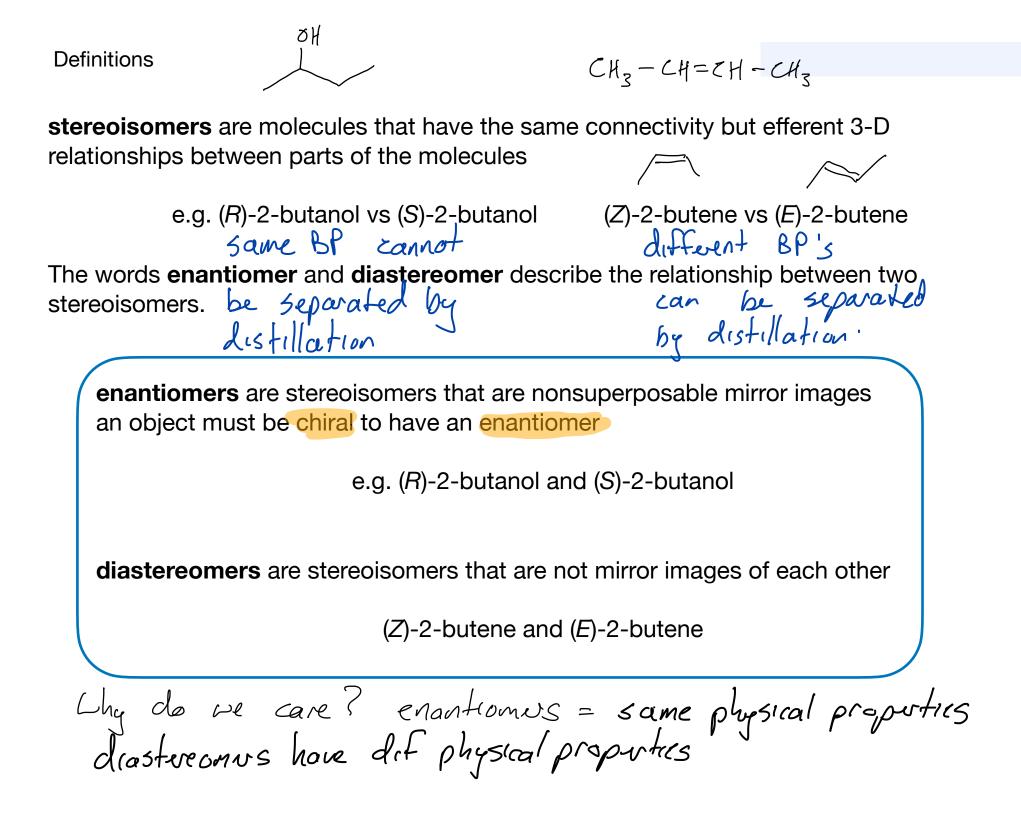
Today

Next Class

Sections 4.9-4.14 Compounds with more than one center of chirality Sections 4.9-4.14 Optical activity and compounds with more than one center of chirality

Sections 5.4 Functional Groups

Sections 5.1 - 5.3, 5.5 Degrees of unsaturation, alkene nomenclature and structure, and how alkenes react

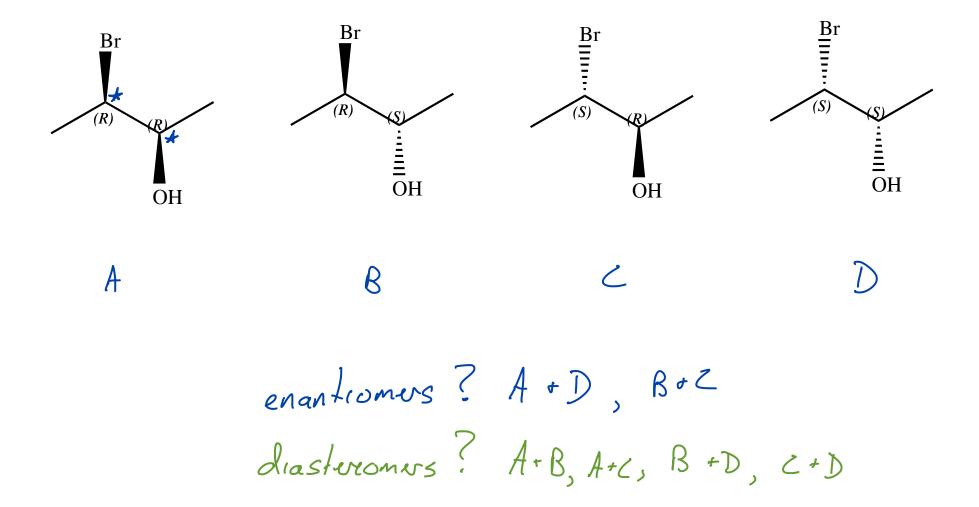

Remember to rework Test 1 by Friday. On a separate piece of paper, provide answers for any questions for which you did not receive full credit. Please do not do the corrections on the actual test.

Maximum possible number of stereoisomers

2ⁿ

where n is the number of stereogenic centers

Stereogenic centers are locations that cause the molecule to exist as different stereoisomoers: R vs S, Z vs E



Enantiomers	and	Diastereomers		
molecules that are		molecules that have the same connectivity and		
nonsuperposable		are		
and		nonsuperposable		
mirror images		but		
of each other	NOT mirror images			
		of each other		
The relationship can be identified using R,S system of nomenclature				
It all chirality centers have opposite configurations and Z,E alkenes, if present, remain the same		If at least one pair but not all pairs of chirality centers have opposite configurations or if Z,E alkenes, if present, have opposite configurations		

if all strucquence centurs are fle same then the two drawings are the same molecule

Molecules with more than one center of chirality 3 - bromo-2-butanol

Maximum number of stereoisomers is 2ⁿ where n is the number of stereogenic centers.

Meso complex

Achiral molecules that contain chirality centers possess a mirror plane:

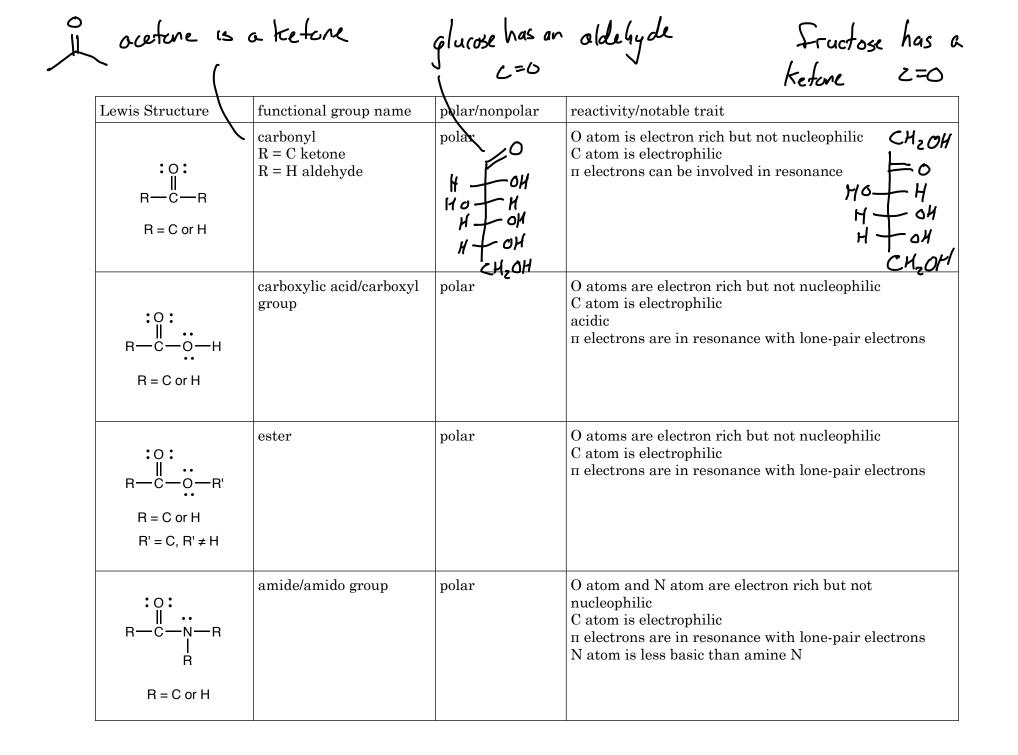
etry of the plane of symmetry in the notecule Because of the plane of symmetry in the notecule Huis molecule isn't chisal. Thus, its mirror image is 2ⁿ stereo isomers, but when the chirality centers each have the same four groups you must check for a plane of symmetry Same identical to (20) top original ""H (S) R M LO. Br Br ßr (80° no mirror place can served them diastereonis diastereomers ৫) 🖞 to 3. A iii Br mirror plane would reflect 5 to R Br ()) () (R) chiral... no mirror plane (plane of symmetry) there for this molecule has an enontion enantiones

How Organic Molecules React Depends on Their Functional Group

Section 5.4

First Semester

second semests


Group I	Group II Group III		Group IV
alkenes and alkynes	polar group alkyl halides, alcohols, ethers, epoxides, alkylsulfonates, tertiary ammonium ions, sulfonium ions, amines	carbonyl chemistry	aromatics Speccal C-C T bards
alkane R R R R R R R R	$S^{+} = OH$ $S^{+} = OH$ $S^{-} = A$ $S^$	P = CI, OR, NRR', SR R or R' = C or H	C-C T bards

Organie "variables" R for c's or H

X for halogen

Y for any eng atom

Lewis Structure	functional group name	polar/nonpolar	reactivity/notable trait
H_{2} H_{2} H_{2} $H_{3}C$ C H_{2} H_{2} $H_{3}C$ H_{2} $H_{3}C$ H_{2} $H_{3}C$ H_{2} $H_{3}C$ H_{2} $H_{3}C$	alkane	nonpolar	not particularly reactive in an organic chemistry sense
H_2 H_3 C C C C C C C C H_3 H_3 C C H_3 H_3 H_3 C H_3	alkene and alkyne	nonpolar	п electrons are nucleophilic no free rotation around C=C bonds п electrons can be involved in resonance
R—СН₂-О́—Н	alcohol/hydroxyl group	polar	O atom is nucleophilic
$R - CH_2 - N - R$ $ $ R $R = C \text{ or } H$	amine/amino group	polar	N atom is nucleophilic N atom is basic
R—CH₂−S—H	thiol/sulfhydryl	nonpolar	S atom is nucleophilic
$R - CH_2 - O - CH_2 - R$ R = C or H	ether	slightly polar	O atom is electron rich, but only weakly nucleophilic

