Today

Sections 5.5-5.13

How alkenes react
Kinetics, thermodynamics, reaction coordinate diagrams, and catalysis

Test 2 on Chap 3 and 4 and Sections 5.1, 5.2, and 5.4 (be able to identify and name functional groups from class on Oct 26) on Friday, November 4.

Review session 7:30 pm Thursday, November 3 in Wilson 130.
althemes all atoms connected to the $s p^{2} C$
 atoms at the ends of the db must be in the same plane
alkenes are e^{-}rich $4 \mathrm{e}^{-1} \mathrm{~s}$ between to C atoms and
2 of the $e^{-1} s$ are in a π bond that sticks out away from the nuclei. attunes are nucleophilic

Nucleophiles: e^{-}rich, have electrons that are 'easy' to get at and can be donated to make a bond

Electrophiles: e^{-}deficient and therefore e^{-}loving, are attracted to the electrons of a $/ \quad$ I nucleophile and can accept the nucleophiles e^{-1} s to form a bond

electron rich
nucle ophite

thus \oplus part means
the H -Cl can play the role of the electrophile

OK, H^{+}part is attracted
to the e^{-} rich alkene, but how does the Cl get on the product? How does thess ron work?

Balanced Chemical Equations and Mechanisms
Balanced chemical equations are like ingredient lists $\mathrm{H}-\mathrm{Br}$

Mechanism one: this is a I step reaction where two reactants collide and form the product, which is

$$
\mathrm{H}-\mathrm{Br}
$$

 created in one step.

Mechanism two: This is a two step resection In this mechaursun the reactants
 collide and Form two intermediates, and

 the intermediates react to form the product

Mechanism and Reaction Coordinate Diagrams

* Reactants) are consumed during a reaction. appear on the left of the arrow
Product (s)
created during a reaction appear on the right of the arrow Transition State
highest energy point on
path from reactant
to product Intermediate

reaction coordinate
extent of reaction
ΔG is a measure of the amount of energy absorbed
or released dwirg a ran
$\Delta G<0$ favorable reaction
K targe or small K's represent reactions with favorable equilibrium constants?

$$
K=\frac{[\text { prod }]}{\text { [react }]} \quad \text { large }
$$

Relationship between ΔG^{0} and K

$$
\Delta G^{0}=-R T \ln K \quad \text { if } K>1
$$

$$
\begin{array}{ll}
\log _{\uparrow}^{y}=\frac{\downarrow}{x} & \log _{10^{1}} \stackrel{\downarrow}{x}=y \\
\log _{10} 1^{\downarrow}=-1 & \log _{10} 1_{\uparrow}^{1}=0
\end{array}
$$

$\Delta G=G_{f}-C_{i}$

$$
=1-5=-4
$$

Draw a reaction coordinate diagram for a one-step mechanism that
$\Delta G>0$ an unfavorable
$\triangle G$ is a reaction that "runs uphill" energetically speaking.
It has a © $A G$

K is small... how could I make as much C as $/$
possible? Le Chätlier's Principle

$$
A+B \rightleftharpoons C+D
$$

A when an eqailitreim is pritarbed the rein reacts to minimize the change

Reaction Coordinate Diagrams: Kinetics
Activation Energy (Kinetics), $\Delta \mathrm{G} \ddagger$
rate of a reaction
amount of emigy required to overcome the activation energy barrier (to get past the transition state)
high ΔG^{\neq}means that the reaction will be blows than runs with low ΔG^{\ddagger} when the roans are run under similar conditions

This is aid mechanism.

$$
\rangle^{+}
$$

reaction coordinate
$C_{(d)} \rightarrow C_{\text {g graphite })}$

Reaction Coordinate Diagrams: Kinetics proposed Mechamsm $\Delta G^{\phi}+\Delta G$ are not related to each other rate of a reaction
ave

$$
\rangle+\rangle^{\text {th } v}
$$

$$
\begin{array}{ll}
\text { rate }=\frac{\Delta[\text { prod }]}{\Delta t} & \text { rate }=\frac{d[\text { prod }]}{d t} \\
\text { rate }=-\frac{\Delta[\text { react }]}{\Delta t} & \text { rate }=-\frac{d[\text { rear }]}{d t}
\end{array}
$$

Mechanisms predict a hypothetical rate law

$$
\text { rate }=k[\rangle=\langle]\left[H-B_{r}\right]
$$

fancy lower case K is the rate constant and it is related to $k k$

Draw the path for a catalyzed version of the reaction catalysts - speed up reactions and are not consumed by a reaction

activation energy, but they often do it by a complicated pathway

Mechanism and Reaction Coordinate Diagrams

Reactant \dagger
Product
Transition State ${ }^{\text {K }}$
more than 1 step mare than one transition state
In this reaction, this st step is the
rate determining step. Intermediate k
Are molecules or sons that form during a reaction and are consumed by the end of the react

The largest activation energy barrier is the one that controls

- these intermediates had enough energy to make it over the $1^{\text {st }}$ hill, 30 they have no problem overcoming the $2^{\text {nd }}$ the rate of the reaction

Hammond Postulate TS resembles the
Transition States: A closer look molecule it is eloner Section 5.6-5.12
 Br° to in energy

reaction coordinate

this band is breaking

more favorable $\Delta G, \Delta b<0 \quad K$, they less favaraba $\Delta G, \Delta 6>0$ lager K
have
the same
intrinsic
rate

reaction coordinate

Today's Office Hours Postponed to 12:30 to 2:00.
On Monday, we will be looking at section 5.5-5.12

